MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance sssd12-05
Stochastic Service System Design. Servers are modeled as M/M/1 queues, and a set of customers must be assigned to the servers which can be operated at different service levels. The objective is to minimize assignment and operating costs.
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 281043.42690000 (ALPHAECP) 281408.42360000 (ANTIGONE) 281408.63520000 (AOA) 281408.63500000 (BARON) 281408.63510000 (BONMIN) 222041.19660000 (COUENNE) 281408.63190000 (LINDO) 281408.63520000 (SCIP) 281408.63520000 (SHOT) |
Referencesⓘ | Elhedhli, Samir, Service System Design with Immobile Servers, Stochastic Demand, and Congestion, Manufacturing & Service Operations Management, 8:1, 2006, 92-97. Günlük, Oktay and Linderoth, Jeff T, Perspective reformulations of mixed integer nonlinear programs with indicator variables, Mathematical Programming, 124:1-2, 2010, 183-205. Günlük, Oktay and Linderoth, Jeff T, Perspective Reformulation and Applications. In Lee, Jon and Leyffer, Sven, Eds, Mixed Integer Nonlinear Programming, Springer, 2012, 61-89. |
Applicationⓘ | Service System Design |
Added to libraryⓘ | 24 Feb 2014 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 95 |
#Binary Variablesⓘ | 75 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 5 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 80 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 52 |
#Linear Constraintsⓘ | 37 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 15 |
Operands in Gen. Nonlin. Functionsⓘ | div |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 210 |
#Nonlinear Nonzeros in Jacobianⓘ | 15 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 5 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 5 |
#Blocks in Hessian of Lagrangianⓘ | 5 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 5.4029e-01 |
Maximal coefficientⓘ | 9.3617e+04 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 53 18 0 35 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 96 21 75 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 291 276 15 0 * * Solve m using MINLP minimizing objvar; Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19 ,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36 ,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53 ,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70 ,b71,b72,b73,b74,b75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,x88,x89,x90,x91,x92,x93,x94,x95,objvar; Positive Variables x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87,x88,x89 ,x90,x91,x92,x93,x94,x95; Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17 ,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34 ,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51 ,b52,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68 ,b69,b70,b71,b72,b73,b74,b75; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53; e1.. - 301.899928098152*b1 - 282.051473607022*b2 - 151.594044960674*b3 - 114.784185877557*b4 - 213.364530716922*b5 - 772.653148294131*b6 - 697.676211791334*b7 - 146.306371684975*b8 - 390.583393857486*b9 - 208.147527440482*b10 - 662.892902187869*b11 - 577.461337631217*b12 - 221.10047354739*b13 - 425.919826737657*b14 - 123.074770812851*b15 - 333.28129673946*b16 - 248.380746723092*b17 - 249.162942146638*b18 - 164.598799150643*b19 - 280.957171099846*b20 - 308.552481034871*b21 - 270.059605282374*b22 - 104.633483616243*b23 - 79.6631898566695*b24 - 170.696237801571*b25 - 237.754076296143*b26 - 189.862911729786*b27 - 107.217531395173*b28 - 131.358715293396*b29 - 103.406777059692*b30 - 626.417763832299*b31 - 487.184730842973*b32 - 502.300580630229*b33 - 506.426352475088*b34 - 463.185748318154*b35 - 358.178221555384*b36 - 281.629247221142*b37 - 230.4203839171*b38 - 251.915433121165*b39 - 209.261088879339*b40 - 303.899003044044*b41 - 243.197489456663*b42 - 237.390965850675*b43 - 57.1385835039462*b44 - 301.733744039334*b45 - 30.6123768510861*b46 - 21.3396948414106*b47 - 278.520865043453*b48 - 162.122145724483*b49 - 304.508803157003*b50 - 252.516206195527*b51 - 178.796029580139*b52 - 319.145634893211*b53 - 257.755103285795*b54 - 317.996864520235*b55 - 936.171150833806*b56 - 887.611963724196*b57 - 419.760722838682*b58 - 519.981401235063*b59 - 524.621957902125*b60 - 326.37044675*b61 - 119.610927362864*b62 - 76.800859418795*b63 - 338.15311375*b64 - 113.101546866718*b65 - 69.3762358590679*b66 - 313.6973235*b67 - 116.266585440261*b68 - 75.0744657614982*b69 - 401.4402965*b70 - 138.599587312691*b71 - 86.376825937843*b72 - 456.70672375*b73 - 150.554161322115*b74 - 91.6821859840903*b75 - 93617.1150833806*x76 - 93617.1150833806*x77 - 93617.1150833806*x78 - 93617.1150833806*x79 - 93617.1150833806*x80 + objvar =E= 0; e2.. 0.609376132*b1 + 1.180016336*b6 + 0.967493052*b11 + 1.004918785*b16 + 0.698898063*b21 + 0.540292599*b26 + 1.460452986*b31 + 0.811980791*b36 + 0.973180988*b41 + 0.544914116*b46 + 0.78515855*b51 + 1.312281472*b56 - 2.0080698912*x81 - 4.0161397824*x82 - 6.0242096736*x83 =E= 0; e3.. 0.609376132*b2 + 1.180016336*b7 + 0.967493052*b12 + 1.004918785*b17 + 0.698898063*b22 + 0.540292599*b27 + 1.460452986*b32 + 0.811980791*b37 + 0.973180988*b42 + 0.544914116*b47 + 0.78515855*b52 + 1.312281472*b57 - 1.581486777*x84 - 3.162973554*x85 - 4.744460331*x86 =E= 0; e4.. 0.609376132*b3 + 1.180016336*b8 + 0.967493052*b13 + 1.004918785*b18 + 0.698898063*b23 + 0.540292599*b28 + 1.460452986*b33 + 0.811980791*b38 + 0.973180988*b43 + 0.544914116*b48 + 0.78515855*b53 + 1.312281472*b58 - 1.9963246902*x87 - 3.9926493804*x88 - 5.9889740706*x89 =E= 0; e5.. 0.609376132*b4 + 1.180016336*b9 + 0.967493052*b14 + 1.004918785*b19 + 0.698898063*b24 + 0.540292599*b29 + 1.460452986*b34 + 0.811980791*b39 + 0.973180988*b44 + 0.544914116*b49 + 0.78515855*b54 + 1.312281472*b59 - 2.065052076*x90 - 4.130104152*x91 - 6.195156228*x92 =E= 0; e6.. 0.609376132*b5 + 1.180016336*b10 + 0.967493052*b15 + 1.004918785*b20 + 0.698898063*b25 + 0.540292599*b30 + 1.460452986*b35 + 0.811980791*b40 + 0.973180988*b45 + 0.544914116*b50 + 0.78515855*b55 + 1.312281472*b60 - 2.0449844238*x93 - 4.0899688476*x94 - 6.1349532714*x95 =E= 0; e7.. b1 + b2 + b3 + b4 + b5 =E= 1; e8.. b6 + b7 + b8 + b9 + b10 =E= 1; e9.. b11 + b12 + b13 + b14 + b15 =E= 1; e10.. b16 + b17 + b18 + b19 + b20 =E= 1; e11.. b21 + b22 + b23 + b24 + b25 =E= 1; e12.. b26 + b27 + b28 + b29 + b30 =E= 1; e13.. b31 + b32 + b33 + b34 + b35 =E= 1; e14.. b36 + b37 + b38 + b39 + b40 =E= 1; e15.. b41 + b42 + b43 + b44 + b45 =E= 1; e16.. b46 + b47 + b48 + b49 + b50 =E= 1; e17.. b51 + b52 + b53 + b54 + b55 =E= 1; e18.. b56 + b57 + b58 + b59 + b60 =E= 1; e19.. b61 + b62 + b63 =L= 1; e20.. b64 + b65 + b66 =L= 1; e21.. b67 + b68 + b69 =L= 1; e22.. b70 + b71 + b72 =L= 1; e23.. b73 + b74 + b75 =L= 1; e24.. - b61 + x81 =L= 0; e25.. - b62 + x82 =L= 0; e26.. - b63 + x83 =L= 0; e27.. - b64 + x84 =L= 0; e28.. - b65 + x85 =L= 0; e29.. - b66 + x86 =L= 0; e30.. - b67 + x87 =L= 0; e31.. - b68 + x88 =L= 0; e32.. - b69 + x89 =L= 0; e33.. - b70 + x90 =L= 0; e34.. - b71 + x91 =L= 0; e35.. - b72 + x92 =L= 0; e36.. - b73 + x93 =L= 0; e37.. - b74 + x94 =L= 0; e38.. - b75 + x95 =L= 0; e39.. -x76/(1 + x76) + x81 =L= 0; e40.. -x76/(1 + x76) + x82 =L= 0; e41.. -x76/(1 + x76) + x83 =L= 0; e42.. -x77/(1 + x77) + x84 =L= 0; e43.. -x77/(1 + x77) + x85 =L= 0; e44.. -x77/(1 + x77) + x86 =L= 0; e45.. -x78/(1 + x78) + x87 =L= 0; e46.. -x78/(1 + x78) + x88 =L= 0; e47.. -x78/(1 + x78) + x89 =L= 0; e48.. -x79/(1 + x79) + x90 =L= 0; e49.. -x79/(1 + x79) + x91 =L= 0; e50.. -x79/(1 + x79) + x92 =L= 0; e51.. -x80/(1 + x80) + x93 =L= 0; e52.. -x80/(1 + x80) + x94 =L= 0; e53.. -x80/(1 + x80) + x95 =L= 0; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f