MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance sssd15-08persp

Stochastic Service System Design. Servers are modeled as M/M/1 queues, and a set of customers must be assigned to the servers which can be operated at different service levels. The objective is to minimize assignment and operating costs.
Perspective reformulation of sssd15-08.
Formats ams gms lp mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
563365.31100000 p1 ( gdx sol )
(infeas: 4e-15)
562617.88180000 p2 ( gdx sol )
(infeas: 0)
Other points (infeas > 1e-08)  
Dual Bounds
380313.03630000 (ANTIGONE)
317495.90820000 (BARON)
323718.82360000 (COUENNE)
562617.85520000 (GUROBI)
562617.88180000 (LINDO)
506457.80750000 (OCTERACT)
482098.89900000 (SCIP)
2842.66848200 (SHOT)
References Elhedhli, Samir, Service System Design with Immobile Servers, Stochastic Demand, and Congestion, Manufacturing & Service Operations Management, 8:1, 2006, 92-97.
Günlük, Oktay and Linderoth, Jeff T, Perspective reformulations of mixed integer nonlinear programs with indicator variables, Mathematical Programming, 124:1-2, 2010, 183-205.
Günlük, Oktay and Linderoth, Jeff T, Perspective Reformulation and Applications. In Lee, Jon and Leyffer, Sven, Eds, Mixed Integer Nonlinear Programming, Springer, 2012, 61-89.
Application Service System Design
Added to library 24 Feb 2014
Problem type MBQCP
#Variables 176
#Binary Variables 144
#Integer Variables 0
#Nonlinear Variables 56
#Nonlinear Binary Variables 24
#Nonlinear Integer Variables 0
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 152
#Nonlinear Nonzeros in Objective 0
#Constraints 79
#Linear Constraints 55
#Quadratic Constraints 24
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 408
#Nonlinear Nonzeros in Jacobian 72
#Nonzeros in (Upper-Left) Hessian of Lagrangian 144
#Nonzeros in Diagonal of Hessian of Lagrangian 0
#Blocks in Hessian of Lagrangian 8
Minimal blocksize in Hessian of Lagrangian 7
Maximal blocksize in Hessian of Lagrangian 7
Average blocksize in Hessian of Lagrangian 7.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 5.3649e-01
Maximal coefficient 9.3203e+04
Infeasibility of initial point 0.3333
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         80       24        0       56        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        177       33      144        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        561      489       72        0
*
*  Solve m using MINLP minimizing objvar;


Variables  b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19
          ,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36
          ,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53
          ,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70
          ,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87
          ,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103
          ,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116
          ,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,b129
          ,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141,b142
          ,b143,b144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155
          ,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168
          ,x169,x170,x171,x172,x173,x174,x175,x176,objvar;

Positive Variables  x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155
          ,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168
          ,x169,x170,x171,x172,x173,x174,x175,x176;

Binary Variables  b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17
          ,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34
          ,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51
          ,b52,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68
          ,b69,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85
          ,b86,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101
          ,b102,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114
          ,b115,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127
          ,b128,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140
          ,b141,b142,b143,b144;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80;


e1..  - 403.928572687557*b1 - 152.992741540361*b2 - 267.315589205704*b3
      - 401.957253171747*b4 - 239.900413376196*b5 - 172.190748942287*b6
      - 242.754569605376*b7 - 206.00422281341*b8 - 175.512360171018*b9
      - 12.4456890694952*b10 - 95.1129504127459*b11 - 163.523864888208*b12
      - 136.749750630694*b13 - 183.460227957173*b14 - 154.161364707845*b15
      - 58.2220762837777*b16 - 427.797333694278*b17 - 124.146285420687*b18
      - 281.762350319908*b19 - 416.122892408842*b20 - 286.880720364618*b21
      - 171.930365706852*b22 - 298.680284192437*b23 - 212.446553403468*b24
      - 334.799175421099*b25 - 166.360551160919*b26 - 261.524865566971*b27
      - 321.118189558705*b28 - 275.112120282415*b29 - 70.1440860194197*b30
      - 281.389498973428*b31 - 225.606388157132*b32 - 321.213816864959*b33
      - 71.9883302424501*b34 - 169.588450009557*b35 - 291.06773760337*b36
      - 283.136668462665*b37 - 418.102856274321*b38 - 323.382162238167*b39
      - 109.329676669547*b40 - 225.077476533111*b41 - 292.549188246279*b42
      - 256.821062390988*b43 - 181.735382103635*b44 - 361.637553977341*b45
      - 487.443715088842*b46 - 391.614198813426*b47 - 276.780369289256*b48
      - 790.809160300441*b49 - 572.306788163427*b50 - 710.561007303222*b51
      - 710.424717790653*b52 - 882.480677740369*b53 - 746.52609026712*b54
      - 932.032155531379*b55 - 673.014016071675*b56 - 415.137891763513*b57
      - 24.1331183147668*b58 - 232.723756037565*b59 - 385.530297939342*b60
      - 328.99787719123*b61 - 412.551506227386*b62 - 368.4253530904*b63
      - 149.097324374568*b64 - 505.111125566583*b65 - 324.408884140539*b66
      - 422.192328810933*b67 - 433.424841813569*b68 - 590.521463309364*b69
      - 601.187176017906*b70 - 639.549861073539*b71 - 393.266050752522*b72
      - 317.266722109018*b73 - 366.343507824765*b74 - 278.701740808319*b75
      - 360.414608909582*b76 - 163.468646330858*b77 - 496.33685624632*b78
      - 135.080317454783*b79 - 291.219332583259*b80 - 60.7098769607628*b81
      - 257.274009667912*b82 - 109.739073857234*b83 - 105.840898609517*b84
      - 149.608079935928*b85 - 478.2765537338*b86 - 175.640633384092*b87
      - 164.991725574781*b88 - 370.179004516539*b89 - 456.332727530502*b90
      - 323.598387892417*b91 - 428.625530616724*b92 - 176.797739228846*b93
      - 657.950143580026*b94 - 146.134286318179*b95 - 347.137285556827*b96
      - 459.855709875116*b97 - 206.994357545204*b98 - 317.109585585788*b99
      - 461.635447603175*b100 - 270.249812459436*b101 - 176.621455199898*b102
      - 266.565650581812*b103 - 255.042767652375*b104 - 688.990984467753*b105
      - 342.921309942336*b106 - 508.744698659858*b107 - 686.009170292228*b108
      - 457.444445796545*b109 - 133.755629117181*b110 - 451.235917636358*b111
      - 427.625644498357*b112 - 275.559617400364*b113 - 356.414463245256*b114
      - 238.594038182377*b115 - 323.736842820792*b116 - 123.509577347529*b117
      - 537.671376447504*b118 - 104.741456798329*b119 - 261.777653762851*b120
      - 343.78539425*b121 - 113.508450322244*b122 - 69.177220392612*b123
      - 264.047028*b124 - 87.3113122712859*b125 - 53.2512330089256*b126
      - 390.47730275*b127 - 123.63305929533*b128 - 73.7850337614663*b129
      - 406.29941025*b130 - 126.736316912988*b131 - 75.0745406137203*b132
      - 283.160272*b133 - 95.8513476067592*b134 - 59.1487898247813*b135
      - 422.01298775*b136 - 132.224826373859*b137 - 78.5002039603394*b138
      - 269.10096475*b139 - 95.9362994616171*b140 - 60.754974511923*b141
      - 395.712942*b142 - 123.433440930338*b143 - 73.1178281922949*b144
      - 93203.2155531379*x145 - 93203.2155531379*x146 - 93203.2155531379*x147
      - 93203.2155531379*x148 - 93203.2155531379*x149 - 93203.2155531379*x150
      - 93203.2155531379*x151 - 93203.2155531379*x152 + objvar =E= 0;

e2..    0.934836132*b1 + 0.594101056*b9 + 1.006108092*b17 + 0.536490725*b25
      + 1.208018103*b33 + 0.741534279*b41 + 1.434929666*b49 + 1.362989351*b57
      + 1.354757088*b65 + 0.875104896*b73 + 0.83020157*b81 + 1.181151032*b89
      + 0.985426772*b97 + 1.234184015*b105 + 0.980634977*b113
      - 1.54666509375*x153 - 3.0933301875*x154 - 4.63999528125*x155 =E= 0;

e3..    0.934836132*b2 + 0.594101056*b10 + 1.006108092*b18 + 0.536490725*b26
      + 1.208018103*b34 + 0.741534279*b42 + 1.434929666*b50 + 1.362989351*b58
      + 1.354757088*b66 + 0.875104896*b74 + 0.83020157*b82 + 1.181151032*b90
      + 0.985426772*b98 + 1.234184015*b106 + 0.980634977*b114
      - 1.19326126546875*x156 - 2.3865225309375*x157 - 3.57978379640625*x158
      =E= 0;

e4..    0.934836132*b3 + 0.594101056*b11 + 1.006108092*b19 + 0.536490725*b27
      + 1.208018103*b35 + 0.741534279*b43 + 1.434929666*b51 + 1.362989351*b59
      + 1.354757088*b67 + 0.875104896*b75 + 0.83020157*b83 + 1.181151032*b91
      + 0.985426772*b99 + 1.234184015*b107 + 0.980634977*b115
      - 1.54916706890625*x159 - 3.0983341378125*x160 - 4.64750120671875*x161
      =E= 0;

e5..    0.934836132*b4 + 0.594101056*b12 + 1.006108092*b20 + 0.536490725*b28
      + 1.208018103*b36 + 0.741534279*b44 + 1.434929666*b52 + 1.362989351*b60
      + 1.354757088*b68 + 0.875104896*b76 + 0.83020157*b84 + 1.181151032*b92
      + 0.985426772*b100 + 1.234184015*b108 + 0.980634977*b116
      - 1.54133366953125*x162 - 3.0826673390625*x163 - 4.62400100859375*x164
      =E= 0;

e6..    0.934836132*b5 + 0.594101056*b13 + 1.006108092*b21 + 0.536490725*b29
      + 1.208018103*b37 + 0.741534279*b45 + 1.434929666*b53 + 1.362989351*b61
      + 1.354757088*b69 + 0.875104896*b77 + 0.83020157*b85 + 1.181151032*b93
      + 0.985426772*b101 + 1.234184015*b109 + 0.980634977*b117
      - 1.3728304284375*x165 - 2.745660856875*x166 - 4.1184912853125*x167 =E= 0
     ;

e7..    0.934836132*b6 + 0.594101056*b14 + 1.006108092*b22 + 0.536490725*b30
      + 1.208018103*b38 + 0.741534279*b46 + 1.434929666*b54 + 1.362989351*b62
      + 1.354757088*b70 + 0.875104896*b78 + 0.83020157*b86 + 1.181151032*b94
      + 0.985426772*b102 + 1.234184015*b110 + 0.980634977*b118
      - 1.6224571809375*x168 - 3.244914361875*x169 - 4.8673715428125*x170 =E= 0
     ;

e8..    0.934836132*b7 + 0.594101056*b15 + 1.006108092*b23 + 0.536490725*b31
      + 1.208018103*b39 + 0.741534279*b47 + 1.434929666*b55 + 1.362989351*b63
      + 1.354757088*b71 + 0.875104896*b79 + 0.83020157*b87 + 1.181151032*b95
      + 0.985426772*b103 + 1.234184015*b111 + 0.980634977*b119
      - 1.52407353515625*x171 - 3.0481470703125*x172 - 4.57222060546875*x173
      =E= 0;

e9..    0.934836132*b8 + 0.594101056*b16 + 1.006108092*b24 + 0.536490725*b32
      + 1.208018103*b40 + 0.741534279*b48 + 1.434929666*b56 + 1.362989351*b64
      + 1.354757088*b72 + 0.875104896*b80 + 0.83020157*b88 + 1.181151032*b96
      + 0.985426772*b104 + 1.234184015*b112 + 0.980634977*b120
      - 1.50114900421875*x174 - 3.0022980084375*x175 - 4.50344701265625*x176
      =E= 0;

e10..    b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8 =E= 1;

e11..    b9 + b10 + b11 + b12 + b13 + b14 + b15 + b16 =E= 1;

e12..    b17 + b18 + b19 + b20 + b21 + b22 + b23 + b24 =E= 1;

e13..    b25 + b26 + b27 + b28 + b29 + b30 + b31 + b32 =E= 1;

e14..    b33 + b34 + b35 + b36 + b37 + b38 + b39 + b40 =E= 1;

e15..    b41 + b42 + b43 + b44 + b45 + b46 + b47 + b48 =E= 1;

e16..    b49 + b50 + b51 + b52 + b53 + b54 + b55 + b56 =E= 1;

e17..    b57 + b58 + b59 + b60 + b61 + b62 + b63 + b64 =E= 1;

e18..    b65 + b66 + b67 + b68 + b69 + b70 + b71 + b72 =E= 1;

e19..    b73 + b74 + b75 + b76 + b77 + b78 + b79 + b80 =E= 1;

e20..    b81 + b82 + b83 + b84 + b85 + b86 + b87 + b88 =E= 1;

e21..    b89 + b90 + b91 + b92 + b93 + b94 + b95 + b96 =E= 1;

e22..    b97 + b98 + b99 + b100 + b101 + b102 + b103 + b104 =E= 1;

e23..    b105 + b106 + b107 + b108 + b109 + b110 + b111 + b112 =E= 1;

e24..    b113 + b114 + b115 + b116 + b117 + b118 + b119 + b120 =E= 1;

e25..    b121 + b122 + b123 =L= 1;

e26..    b124 + b125 + b126 =L= 1;

e27..    b127 + b128 + b129 =L= 1;

e28..    b130 + b131 + b132 =L= 1;

e29..    b133 + b134 + b135 =L= 1;

e30..    b136 + b137 + b138 =L= 1;

e31..    b139 + b140 + b141 =L= 1;

e32..    b142 + b143 + b144 =L= 1;

e33..  - b121 + x153 =L= 0;

e34..  - b122 + x154 =L= 0;

e35..  - b123 + x155 =L= 0;

e36..  - b124 + x156 =L= 0;

e37..  - b125 + x157 =L= 0;

e38..  - b126 + x158 =L= 0;

e39..  - b127 + x159 =L= 0;

e40..  - b128 + x160 =L= 0;

e41..  - b129 + x161 =L= 0;

e42..  - b130 + x162 =L= 0;

e43..  - b131 + x163 =L= 0;

e44..  - b132 + x164 =L= 0;

e45..  - b133 + x165 =L= 0;

e46..  - b134 + x166 =L= 0;

e47..  - b135 + x167 =L= 0;

e48..  - b136 + x168 =L= 0;

e49..  - b137 + x169 =L= 0;

e50..  - b138 + x170 =L= 0;

e51..  - b139 + x171 =L= 0;

e52..  - b140 + x172 =L= 0;

e53..  - b141 + x173 =L= 0;

e54..  - b142 + x174 =L= 0;

e55..  - b143 + x175 =L= 0;

e56..  - b144 + x176 =L= 0;

e57.. x153*b121 + x153*x145 - x145*b121 =L= 0;

e58.. x154*b122 + x154*x145 - x145*b122 =L= 0;

e59.. x155*b123 + x155*x145 - x145*b123 =L= 0;

e60.. x156*b124 + x156*x146 - x146*b124 =L= 0;

e61.. x157*b125 + x157*x146 - x146*b125 =L= 0;

e62.. x158*b126 + x158*x146 - x146*b126 =L= 0;

e63.. x159*b127 + x159*x147 - x147*b127 =L= 0;

e64.. x160*b128 + x160*x147 - x147*b128 =L= 0;

e65.. x161*b129 + x161*x147 - x147*b129 =L= 0;

e66.. x162*b130 + x162*x148 - x148*b130 =L= 0;

e67.. x163*b131 + x163*x148 - x148*b131 =L= 0;

e68.. x164*b132 + x164*x148 - x148*b132 =L= 0;

e69.. x165*b133 + x165*x149 - x149*b133 =L= 0;

e70.. x166*b134 + x166*x149 - x149*b134 =L= 0;

e71.. x167*b135 + x167*x149 - x149*b135 =L= 0;

e72.. x168*b136 + x168*x150 - x150*b136 =L= 0;

e73.. x169*b137 + x169*x150 - x150*b137 =L= 0;

e74.. x170*b138 + x170*x150 - x150*b138 =L= 0;

e75.. x171*b139 + x171*x151 - x151*b139 =L= 0;

e76.. x172*b140 + x172*x151 - x151*b140 =L= 0;

e77.. x173*b141 + x173*x151 - x151*b141 =L= 0;

e78.. x174*b142 + x174*x152 - x152*b142 =L= 0;

e79.. x175*b143 + x175*x152 - x152*b143 =L= 0;

e80.. x176*b144 + x176*x152 - x152*b144 =L= 0;

* set non-default levels
b1.l = 0.125;
b2.l = 0.125;
b3.l = 0.125;
b4.l = 0.125;
b5.l = 0.125;
b6.l = 0.125;
b7.l = 0.125;
b8.l = 0.125;
b9.l = 0.125;
b10.l = 0.125;
b11.l = 0.125;
b12.l = 0.125;
b13.l = 0.125;
b14.l = 0.125;
b15.l = 0.125;
b16.l = 0.125;
b17.l = 0.125;
b18.l = 0.125;
b19.l = 0.125;
b20.l = 0.125;
b21.l = 0.125;
b22.l = 0.125;
b23.l = 0.125;
b24.l = 0.125;
b25.l = 0.125;
b26.l = 0.125;
b27.l = 0.125;
b28.l = 0.125;
b29.l = 0.125;
b30.l = 0.125;
b31.l = 0.125;
b32.l = 0.125;
b33.l = 0.125;
b34.l = 0.125;
b35.l = 0.125;
b36.l = 0.125;
b37.l = 0.125;
b38.l = 0.125;
b39.l = 0.125;
b40.l = 0.125;
b41.l = 0.125;
b42.l = 0.125;
b43.l = 0.125;
b44.l = 0.125;
b45.l = 0.125;
b46.l = 0.125;
b47.l = 0.125;
b48.l = 0.125;
b49.l = 0.125;
b50.l = 0.125;
b51.l = 0.125;
b52.l = 0.125;
b53.l = 0.125;
b54.l = 0.125;
b55.l = 0.125;
b56.l = 0.125;
b57.l = 0.125;
b58.l = 0.125;
b59.l = 0.125;
b60.l = 0.125;
b61.l = 0.125;
b62.l = 0.125;
b63.l = 0.125;
b64.l = 0.125;
b65.l = 0.125;
b66.l = 0.125;
b67.l = 0.125;
b68.l = 0.125;
b69.l = 0.125;
b70.l = 0.125;
b71.l = 0.125;
b72.l = 0.125;
b73.l = 0.125;
b74.l = 0.125;
b75.l = 0.125;
b76.l = 0.125;
b77.l = 0.125;
b78.l = 0.125;
b79.l = 0.125;
b80.l = 0.125;
b81.l = 0.125;
b82.l = 0.125;
b83.l = 0.125;
b84.l = 0.125;
b85.l = 0.125;
b86.l = 0.125;
b87.l = 0.125;
b88.l = 0.125;
b89.l = 0.125;
b90.l = 0.125;
b91.l = 0.125;
b92.l = 0.125;
b93.l = 0.125;
b94.l = 0.125;
b95.l = 0.125;
b96.l = 0.125;
b97.l = 0.125;
b98.l = 0.125;
b99.l = 0.125;
b100.l = 0.125;
b101.l = 0.125;
b102.l = 0.125;
b103.l = 0.125;
b104.l = 0.125;
b105.l = 0.125;
b106.l = 0.125;
b107.l = 0.125;
b108.l = 0.125;
b109.l = 0.125;
b110.l = 0.125;
b111.l = 0.125;
b112.l = 0.125;
b113.l = 0.125;
b114.l = 0.125;
b115.l = 0.125;
b116.l = 0.125;
b117.l = 0.125;
b118.l = 0.125;
b119.l = 0.125;
b120.l = 0.125;
b121.l = 0.333333333333333;
b122.l = 0.333333333333333;
b123.l = 0.333333333333333;
b124.l = 0.333333333333333;
b125.l = 0.333333333333333;
b126.l = 0.333333333333333;
b127.l = 0.333333333333333;
b128.l = 0.333333333333333;
b129.l = 0.333333333333333;
b130.l = 0.333333333333333;
b131.l = 0.333333333333333;
b132.l = 0.333333333333333;
b133.l = 0.333333333333333;
b134.l = 0.333333333333333;
b135.l = 0.333333333333333;
b136.l = 0.333333333333333;
b137.l = 0.333333333333333;
b138.l = 0.333333333333333;
b139.l = 0.333333333333333;
b140.l = 0.333333333333333;
b141.l = 0.333333333333333;
b142.l = 0.333333333333333;
b143.l = 0.333333333333333;
b144.l = 0.333333333333333;
x145.l = 1.6087063301402;
x146.l = 3.98267557388175;
x147.l = 1.60194612605143;
x148.l = 1.62330360892806;
x149.l = 2.27604466639882;
x150.l = 1.42636562172377;
x151.l = 1.67243339752216;
x152.l = 1.74247700111916;
x153.l = 0.205556078576023;
x154.l = 0.205556078576023;
x155.l = 0.205556078576023;
x156.l = 0.266434871173645;
x157.l = 0.266434871173645;
x158.l = 0.266434871173645;
x159.l = 0.205224096175844;
x160.l = 0.205224096175844;
x161.l = 0.205224096175844;
x162.l = 0.206267090524503;
x163.l = 0.206267090524503;
x164.l = 0.206267090524503;
x165.l = 0.231584618869147;
x166.l = 0.231584618869147;
x167.l = 0.231584618869147;
x168.l = 0.195953653062178;
x169.l = 0.195953653062178;
x170.l = 0.195953653062178;
x171.l = 0.208603065539795;
x172.l = 0.208603065539795;
x173.l = 0.208603065539795;
x174.l = 0.211788710280048;
x175.l = 0.211788710280048;
x176.l = 0.211788710280048;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2022-08-11 Git hash: f176bd52
Imprint / Privacy Policy / License: CC-BY 4.0