MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance sssd20-08persp

Stochastic Service System Design. Servers are modeled as M/M/1 queues, and a set of customers must be assigned to the servers which can be operated at different service levels. The objective is to minimize assignment and operating costs.
Perspective reformulation of sssd20-08.
Formats ams gms lp mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
473153.10020000 p1 ( gdx sol )
(infeas: 2e-15)
469667.29740000 p2 ( gdx sol )
(infeas: 0)
469657.90300000 p3 ( gdx sol )
(infeas: 3e-12)
469644.40280000 p4 ( gdx sol )
(infeas: 1e-10)
469619.83760000 p5 ( gdx sol )
(infeas: 1e-16)
Other points (infeas > 1e-08)  
Dual Bounds
321368.23130000 (ANTIGONE)
273745.69300000 (BARON)
275446.44220000 (COUENNE)
469619.61410000 (GUROBI)
265284.63790000 (LINDO)
405786.04140000 (SCIP)
3867.80080200 (SHOT)
References Elhedhli, Samir, Service System Design with Immobile Servers, Stochastic Demand, and Congestion, Manufacturing & Service Operations Management, 8:1, 2006, 92-97.
Günlük, Oktay and Linderoth, Jeff T, Perspective reformulations of mixed integer nonlinear programs with indicator variables, Mathematical Programming, 124:1-2, 2010, 183-205.
Günlük, Oktay and Linderoth, Jeff T, Perspective Reformulation and Applications. In Lee, Jon and Leyffer, Sven, Eds, Mixed Integer Nonlinear Programming, Springer, 2012, 61-89.
Application Service System Design
Added to library 24 Feb 2014
Problem type MBQCP
#Variables 216
#Binary Variables 184
#Integer Variables 0
#Nonlinear Variables 56
#Nonlinear Binary Variables 24
#Nonlinear Integer Variables 0
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 192
#Nonlinear Nonzeros in Objective 0
#Constraints 84
#Linear Constraints 60
#Quadratic Constraints 24
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 488
#Nonlinear Nonzeros in Jacobian 72
#Nonzeros in (Upper-Left) Hessian of Lagrangian 144
#Nonzeros in Diagonal of Hessian of Lagrangian 0
#Blocks in Hessian of Lagrangian 8
Minimal blocksize in Hessian of Lagrangian 7
Maximal blocksize in Hessian of Lagrangian 7
Average blocksize in Hessian of Lagrangian 7.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 5.4743e-01
Maximal coefficient 8.8729e+04
Infeasibility of initial point 0.3333
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         85       29        0       56        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        217       33      184        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        681      609       72        0
*
*  Solve m using MINLP minimizing objvar;


Variables  b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19
          ,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36
          ,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53
          ,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70
          ,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87
          ,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103
          ,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116
          ,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,b129
          ,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141,b142
          ,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154,b155
          ,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167,b168
          ,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180,b181
          ,b182,b183,b184,x185,x186,x187,x188,x189,x190,x191,x192,x193,x194
          ,x195,x196,x197,x198,x199,x200,x201,x202,x203,x204,x205,x206,x207
          ,x208,x209,x210,x211,x212,x213,x214,x215,x216,objvar;

Positive Variables  x185,x186,x187,x188,x189,x190,x191,x192,x193,x194,x195
          ,x196,x197,x198,x199,x200,x201,x202,x203,x204,x205,x206,x207,x208
          ,x209,x210,x211,x212,x213,x214,x215,x216;

Binary Variables  b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17
          ,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34
          ,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51
          ,b52,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68
          ,b69,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85
          ,b86,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101
          ,b102,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114
          ,b115,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127
          ,b128,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140
          ,b141,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153
          ,b154,b155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166
          ,b167,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179
          ,b180,b181,b182,b183,b184;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85;


e1..  - 111.366069033018*b1 - 173.736682895127*b2 - 206.584137827711*b3
      - 311.192639215759*b4 - 391.096663187392*b5 - 412.724041015689*b6
      - 362.90703724183*b7 - 412.238377551605*b8 - 202.33239914492*b9
      - 206.873035263351*b10 - 459.424203486646*b11 - 436.382257935297*b12
      - 595.212791352102*b13 - 554.589535228908*b14 - 561.749361850176*b15
      - 581.529277658138*b16 - 530.881632918085*b17 - 536.948983658504*b18
      - 325.467953593857*b19 - 315.525067375426*b20 - 76.225942040435*b21
      - 254.905793105451*b22 - 113.004738070171*b23 - 177.189040572114*b24
      - 173.894920684095*b25 - 152.600290074966*b26 - 204.409857240935*b27
      - 16.5055441265287*b28 - 138.719762707452*b29 - 72.1288414712326*b30
      - 120.847015325226*b31 - 99.571165171974*b32 - 151.849080781614*b33
      - 145.681002740026*b34 - 319.104683215451*b35 - 286.753801045421*b36
      - 393.925160475677*b37 - 359.934057246776*b38 - 372.757367428863*b39
      - 380.320704273821*b40 - 209.897358368756*b41 - 176.903014825797*b42
      - 484.441224042163*b43 - 386.398700662687*b44 - 569.816540558016*b45
      - 500.146929279378*b46 - 536.081866783575*b47 - 538.164119624621*b48
      - 472.75417976903*b49 - 394.671861667082*b50 - 661.778650400896*b51
      - 311.233594837076*b52 - 537.233382862136*b53 - 352.610164566948*b54
      - 508.430479292237*b55 - 433.246268236365*b56 - 240.434688571414*b57
      - 247.573379889676*b58 - 140.125745864737*b59 - 129.619586841229*b60
      - 95.259779915922*b61 - 157.318586867059*b62 - 70.3512639139942*b63
      - 129.990055093272*b64 - 243.357134921591*b65 - 304.003791259259*b66
      - 387.22826595551*b67 - 513.078195638243*b68 - 616.876803085642*b69
      - 635.234357536375*b70 - 584.514585206566*b71 - 639.355553242285*b72
      - 471.729855743646*b73 - 557.923885983252*b74 - 106.468143550206*b75
      - 576.327451798806*b76 - 526.167479727853*b77 - 684.640492332848*b78
      - 496.847481320222*b79 - 632.720138765642*b80 - 349.132941483343*b81
      - 328.586110112758*b82 - 615.607044330971*b83 - 537.140113127724*b84
      - 717.322415523131*b85 - 647.481188136546*b86 - 684.12778533852*b87
      - 686.401242893627*b88 - 506.816284666641*b89 - 398.035848133399*b90
      - 855.431776792172*b91 - 471.606942587939*b92 - 801.214873020304*b93
      - 596.722224078614*b94 - 753.768882151975*b95 - 691.333659314473*b96
      - 85.3675502274446*b97 - 158.379394593169*b98 - 257.300026361108*b99
      - 320.704543355031*b100 - 448.126320657674*b101 - 457.763772256702*b102
      - 408.83386135894*b103 - 463.255868286668*b104 - 237.144352702819*b105
      - 177.481389098916*b106 - 528.418902427793*b107 - 367.481249017807*b108
      - 581.69455257316*b109 - 486.218458446561*b110 - 545.202814571382*b111
      - 534.842653535173*b112 - 273.315651326331*b113 - 294.736877404174*b114
      - 91.5634612712189*b115 - 207.431742416254*b116 - 131.445214576321*b117
      - 232.45283126314*b118 - 119.004267377741*b119 - 195.036716336294*b120
      - 382.803613122328*b121 - 467.001607601617*b122 - 186.213458590968*b123
      - 547.081668156355*b124 - 541.160249117729*b125 - 656.49566392312*b126
      - 512.884098066802*b127 - 621.549425681682*b128 - 181.371452020713*b129
      - 175.492124453316*b130 - 162.248252595624*b131 - 55.0280789945633*b132
      - 114.798088119326*b133 - 107.382697687723*b134 - 90.3342797608636*b135
      - 106.314336443356*b136 - 221.180367269329*b137 - 200.830918650843*b138
      - 420.854797821172*b139 - 351.4013073243*b140 - 486.967847106279*b141
      - 432.551908850222*b142 - 462.429481904519*b143 - 462.157040602356*b144
      - 181.09388190356*b145 - 223.750754907429*b146 - 118.11570891131*b147
      - 279.735432351987*b148 - 287.185185564983*b149 - 336.883342353846*b150
      - 272.594688961982*b151 - 322.770119748047*b152 - 326.795248361408*b153
      - 271.173036007453*b154 - 758.353052369709*b155 - 597.043789091874*b156
      - 887.286114762329*b157 - 775.415492640821*b158 - 834.258761011951*b159
      - 836.015790081594*b160 - 333.50853775*b161 - 114.488510347914*b162
      - 71.1466014342705*b163 - 327.61554475*b164 - 115.456652447649*b165
      - 72.6961052063678*b166 - 418.975572*b167 - 144.050104531568*b168
      - 89.5861361571157*b169 - 441.6481805*b170 - 147.751509681552*b171
      - 90.6409148587658*b172 - 284.85345325*b173 - 109.929987849219*b174
      - 72.4317650925971*b175 - 364.98681475*b176 - 131.410153066893*b177
      - 83.6314997177532*b178 - 261.83219775*b179 - 103.183186592188*b180
      - 68.7017117455899*b181 - 481.55377575*b182 - 144.356933487536*b183
      - 83.8297118343163*b184 - 88728.6114762329*x185 - 88728.6114762329*x186
      - 88728.6114762329*x187 - 88728.6114762329*x188 - 88728.6114762329*x189
      - 88728.6114762329*x190 - 88728.6114762329*x191 - 88728.6114762329*x192
      + objvar =E= 0;

e2..    0.818476132*b1 + 0.870157536*b9 + 1.031851452*b17 + 0.557538685*b25
      + 0.547431463*b33 + 0.875695399*b41 + 1.084580786*b49 + 0.730328391*b57
      + 0.942474488*b65 + 1.428565416*b73 + 0.86023025*b81 + 1.427064072*b89
      + 1.077855852*b97 + 0.966432495*b105 + 0.749586417*b113 + 1.20475136*b121
      + 0.637168473*b129 + 0.637828387*b137 + 0.578555855*b145
      + 1.377981994*b153 - 1.68639324125*x193 - 3.3727864825*x194
      - 5.05917972375*x195 =E= 0;

e3..    0.818476132*b2 + 0.870157536*b10 + 1.031851452*b18 + 0.557538685*b26
      + 0.547431463*b34 + 0.875695399*b42 + 1.084580786*b50 + 0.730328391*b58
      + 0.942474488*b66 + 1.428565416*b74 + 0.86023025*b82 + 1.427064072*b90
      + 1.077855852*b98 + 0.966432495*b106 + 0.749586417*b114 + 1.20475136*b122
      + 0.637168473*b130 + 0.637828387*b138 + 0.578555855*b146
      + 1.377981994*b154 - 1.792318871875*x196 - 3.58463774375*x197
      - 5.376956615625*x198 =E= 0;

e4..    0.818476132*b3 + 0.870157536*b11 + 1.031851452*b19 + 0.557538685*b27
      + 0.547431463*b35 + 0.875695399*b43 + 1.084580786*b51 + 0.730328391*b59
      + 0.942474488*b67 + 1.428565416*b75 + 0.86023025*b83 + 1.427064072*b91
      + 1.077855852*b99 + 0.966432495*b107 + 0.749586417*b115 + 1.20475136*b123
      + 0.637168473*b131 + 0.637828387*b139 + 0.578555855*b147
      + 1.377981994*b155 - 2.128386030625*x199 - 4.25677206125*x200
      - 6.385158091875*x201 =E= 0;

e5..    0.818476132*b4 + 0.870157536*b12 + 1.031851452*b20 + 0.557538685*b28
      + 0.547431463*b36 + 0.875695399*b44 + 1.084580786*b52 + 0.730328391*b60
      + 0.942474488*b68 + 1.428565416*b76 + 0.86023025*b84 + 1.427064072*b92
      + 1.077855852*b100 + 0.966432495*b108 + 0.749586417*b116
      + 1.20475136*b124 + 0.637168473*b132 + 0.637828387*b140
      + 0.578555855*b148 + 1.377981994*b156 - 2.066948260625*x202
      - 4.13389652125*x203 - 6.200844781875*x204 =E= 0;

e6..    0.818476132*b5 + 0.870157536*b13 + 1.031851452*b21 + 0.557538685*b29
      + 0.547431463*b37 + 0.875695399*b45 + 1.084580786*b53 + 0.730328391*b61
      + 0.942474488*b69 + 1.428565416*b77 + 0.86023025*b85 + 1.427064072*b93
      + 1.077855852*b101 + 0.966432495*b109 + 0.749586417*b117
      + 1.20475136*b125 + 0.637168473*b133 + 0.637828387*b141
      + 0.578555855*b149 + 1.377981994*b157 - 2.04641702*x205 - 4.09283404*x206
      - 6.13925106*x207 =E= 0;

e7..    0.818476132*b6 + 0.870157536*b14 + 1.031851452*b22 + 0.557538685*b30
      + 0.547431463*b38 + 0.875695399*b46 + 1.084580786*b54 + 0.730328391*b62
      + 0.942474488*b70 + 1.428565416*b78 + 0.86023025*b86 + 1.427064072*b94
      + 1.077855852*b102 + 0.966432495*b110 + 0.749586417*b118
      + 1.20475136*b126 + 0.637168473*b134 + 0.637828387*b142
      + 0.578555855*b150 + 1.377981994*b158 - 2.129217781875*x208
      - 4.25843556375*x209 - 6.387653345625*x210 =E= 0;

e8..    0.818476132*b7 + 0.870157536*b15 + 1.031851452*b23 + 0.557538685*b31
      + 0.547431463*b39 + 0.875695399*b47 + 1.084580786*b55 + 0.730328391*b63
      + 0.942474488*b71 + 1.428565416*b79 + 0.86023025*b87 + 1.427064072*b95
      + 1.077855852*b103 + 0.966432495*b111 + 0.749586417*b119
      + 1.20475136*b127 + 0.637168473*b135 + 0.637828387*b143
      + 0.578555855*b151 + 1.377981994*b159 - 2.002947450625*x211
      - 4.00589490125*x212 - 6.008842351875*x213 =E= 0;

e9..    0.818476132*b8 + 0.870157536*b16 + 1.031851452*b24 + 0.557538685*b32
      + 0.547431463*b40 + 0.875695399*b48 + 1.084580786*b56 + 0.730328391*b64
      + 0.942474488*b72 + 1.428565416*b80 + 0.86023025*b88 + 1.427064072*b96
      + 1.077855852*b104 + 0.966432495*b112 + 0.749586417*b120
      + 1.20475136*b128 + 0.637168473*b136 + 0.637828387*b144
      + 0.578555855*b152 + 1.377981994*b160 - 1.62146898*x214 - 3.24293796*x215
      - 4.86440694*x216 =E= 0;

e10..    b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8 =E= 1;

e11..    b9 + b10 + b11 + b12 + b13 + b14 + b15 + b16 =E= 1;

e12..    b17 + b18 + b19 + b20 + b21 + b22 + b23 + b24 =E= 1;

e13..    b25 + b26 + b27 + b28 + b29 + b30 + b31 + b32 =E= 1;

e14..    b33 + b34 + b35 + b36 + b37 + b38 + b39 + b40 =E= 1;

e15..    b41 + b42 + b43 + b44 + b45 + b46 + b47 + b48 =E= 1;

e16..    b49 + b50 + b51 + b52 + b53 + b54 + b55 + b56 =E= 1;

e17..    b57 + b58 + b59 + b60 + b61 + b62 + b63 + b64 =E= 1;

e18..    b65 + b66 + b67 + b68 + b69 + b70 + b71 + b72 =E= 1;

e19..    b73 + b74 + b75 + b76 + b77 + b78 + b79 + b80 =E= 1;

e20..    b81 + b82 + b83 + b84 + b85 + b86 + b87 + b88 =E= 1;

e21..    b89 + b90 + b91 + b92 + b93 + b94 + b95 + b96 =E= 1;

e22..    b97 + b98 + b99 + b100 + b101 + b102 + b103 + b104 =E= 1;

e23..    b105 + b106 + b107 + b108 + b109 + b110 + b111 + b112 =E= 1;

e24..    b113 + b114 + b115 + b116 + b117 + b118 + b119 + b120 =E= 1;

e25..    b121 + b122 + b123 + b124 + b125 + b126 + b127 + b128 =E= 1;

e26..    b129 + b130 + b131 + b132 + b133 + b134 + b135 + b136 =E= 1;

e27..    b137 + b138 + b139 + b140 + b141 + b142 + b143 + b144 =E= 1;

e28..    b145 + b146 + b147 + b148 + b149 + b150 + b151 + b152 =E= 1;

e29..    b153 + b154 + b155 + b156 + b157 + b158 + b159 + b160 =E= 1;

e30..    b161 + b162 + b163 =L= 1;

e31..    b164 + b165 + b166 =L= 1;

e32..    b167 + b168 + b169 =L= 1;

e33..    b170 + b171 + b172 =L= 1;

e34..    b173 + b174 + b175 =L= 1;

e35..    b176 + b177 + b178 =L= 1;

e36..    b179 + b180 + b181 =L= 1;

e37..    b182 + b183 + b184 =L= 1;

e38..  - b161 + x193 =L= 0;

e39..  - b162 + x194 =L= 0;

e40..  - b163 + x195 =L= 0;

e41..  - b164 + x196 =L= 0;

e42..  - b165 + x197 =L= 0;

e43..  - b166 + x198 =L= 0;

e44..  - b167 + x199 =L= 0;

e45..  - b168 + x200 =L= 0;

e46..  - b169 + x201 =L= 0;

e47..  - b170 + x202 =L= 0;

e48..  - b171 + x203 =L= 0;

e49..  - b172 + x204 =L= 0;

e50..  - b173 + x205 =L= 0;

e51..  - b174 + x206 =L= 0;

e52..  - b175 + x207 =L= 0;

e53..  - b176 + x208 =L= 0;

e54..  - b177 + x209 =L= 0;

e55..  - b178 + x210 =L= 0;

e56..  - b179 + x211 =L= 0;

e57..  - b180 + x212 =L= 0;

e58..  - b181 + x213 =L= 0;

e59..  - b182 + x214 =L= 0;

e60..  - b183 + x215 =L= 0;

e61..  - b184 + x216 =L= 0;

e62.. x193*b161 + x193*x185 - x185*b161 =L= 0;

e63.. x194*b162 + x194*x185 - x185*b162 =L= 0;

e64.. x195*b163 + x195*x185 - x185*b163 =L= 0;

e65.. x196*b164 + x196*x186 - x186*b164 =L= 0;

e66.. x197*b165 + x197*x186 - x186*b165 =L= 0;

e67.. x198*b166 + x198*x186 - x186*b166 =L= 0;

e68.. x199*b167 + x199*x187 - x187*b167 =L= 0;

e69.. x200*b168 + x200*x187 - x187*b168 =L= 0;

e70.. x201*b169 + x201*x187 - x187*b169 =L= 0;

e71.. x202*b170 + x202*x188 - x188*b170 =L= 0;

e72.. x203*b171 + x203*x188 - x188*b171 =L= 0;

e73.. x204*b172 + x204*x188 - x188*b172 =L= 0;

e74.. x205*b173 + x205*x189 - x189*b173 =L= 0;

e75.. x206*b174 + x206*x189 - x189*b174 =L= 0;

e76.. x207*b175 + x207*x189 - x189*b175 =L= 0;

e77.. x208*b176 + x208*x190 - x190*b176 =L= 0;

e78.. x209*b177 + x209*x190 - x190*b177 =L= 0;

e79.. x210*b178 + x210*x190 - x190*b178 =L= 0;

e80.. x211*b179 + x211*x191 - x191*b179 =L= 0;

e81.. x212*b180 + x212*x191 - x191*b180 =L= 0;

e82.. x213*b181 + x213*x191 - x191*b181 =L= 0;

e83.. x214*b182 + x214*x192 - x192*b182 =L= 0;

e84.. x215*b183 + x215*x192 - x192*b183 =L= 0;

e85.. x216*b184 + x216*x192 - x192*b184 =L= 0;

* set non-default levels
b1.l = 0.125;
b2.l = 0.125;
b3.l = 0.125;
b4.l = 0.125;
b5.l = 0.125;
b6.l = 0.125;
b7.l = 0.125;
b8.l = 0.125;
b9.l = 0.125;
b10.l = 0.125;
b11.l = 0.125;
b12.l = 0.125;
b13.l = 0.125;
b14.l = 0.125;
b15.l = 0.125;
b16.l = 0.125;
b17.l = 0.125;
b18.l = 0.125;
b19.l = 0.125;
b20.l = 0.125;
b21.l = 0.125;
b22.l = 0.125;
b23.l = 0.125;
b24.l = 0.125;
b25.l = 0.125;
b26.l = 0.125;
b27.l = 0.125;
b28.l = 0.125;
b29.l = 0.125;
b30.l = 0.125;
b31.l = 0.125;
b32.l = 0.125;
b33.l = 0.125;
b34.l = 0.125;
b35.l = 0.125;
b36.l = 0.125;
b37.l = 0.125;
b38.l = 0.125;
b39.l = 0.125;
b40.l = 0.125;
b41.l = 0.125;
b42.l = 0.125;
b43.l = 0.125;
b44.l = 0.125;
b45.l = 0.125;
b46.l = 0.125;
b47.l = 0.125;
b48.l = 0.125;
b49.l = 0.125;
b50.l = 0.125;
b51.l = 0.125;
b52.l = 0.125;
b53.l = 0.125;
b54.l = 0.125;
b55.l = 0.125;
b56.l = 0.125;
b57.l = 0.125;
b58.l = 0.125;
b59.l = 0.125;
b60.l = 0.125;
b61.l = 0.125;
b62.l = 0.125;
b63.l = 0.125;
b64.l = 0.125;
b65.l = 0.125;
b66.l = 0.125;
b67.l = 0.125;
b68.l = 0.125;
b69.l = 0.125;
b70.l = 0.125;
b71.l = 0.125;
b72.l = 0.125;
b73.l = 0.125;
b74.l = 0.125;
b75.l = 0.125;
b76.l = 0.125;
b77.l = 0.125;
b78.l = 0.125;
b79.l = 0.125;
b80.l = 0.125;
b81.l = 0.125;
b82.l = 0.125;
b83.l = 0.125;
b84.l = 0.125;
b85.l = 0.125;
b86.l = 0.125;
b87.l = 0.125;
b88.l = 0.125;
b89.l = 0.125;
b90.l = 0.125;
b91.l = 0.125;
b92.l = 0.125;
b93.l = 0.125;
b94.l = 0.125;
b95.l = 0.125;
b96.l = 0.125;
b97.l = 0.125;
b98.l = 0.125;
b99.l = 0.125;
b100.l = 0.125;
b101.l = 0.125;
b102.l = 0.125;
b103.l = 0.125;
b104.l = 0.125;
b105.l = 0.125;
b106.l = 0.125;
b107.l = 0.125;
b108.l = 0.125;
b109.l = 0.125;
b110.l = 0.125;
b111.l = 0.125;
b112.l = 0.125;
b113.l = 0.125;
b114.l = 0.125;
b115.l = 0.125;
b116.l = 0.125;
b117.l = 0.125;
b118.l = 0.125;
b119.l = 0.125;
b120.l = 0.125;
b121.l = 0.125;
b122.l = 0.125;
b123.l = 0.125;
b124.l = 0.125;
b125.l = 0.125;
b126.l = 0.125;
b127.l = 0.125;
b128.l = 0.125;
b129.l = 0.125;
b130.l = 0.125;
b131.l = 0.125;
b132.l = 0.125;
b133.l = 0.125;
b134.l = 0.125;
b135.l = 0.125;
b136.l = 0.125;
b137.l = 0.125;
b138.l = 0.125;
b139.l = 0.125;
b140.l = 0.125;
b141.l = 0.125;
b142.l = 0.125;
b143.l = 0.125;
b144.l = 0.125;
b145.l = 0.125;
b146.l = 0.125;
b147.l = 0.125;
b148.l = 0.125;
b149.l = 0.125;
b150.l = 0.125;
b151.l = 0.125;
b152.l = 0.125;
b153.l = 0.125;
b154.l = 0.125;
b155.l = 0.125;
b156.l = 0.125;
b157.l = 0.125;
b158.l = 0.125;
b159.l = 0.125;
b160.l = 0.125;
b161.l = 0.333333333333333;
b162.l = 0.333333333333333;
b163.l = 0.333333333333333;
b164.l = 0.333333333333333;
b165.l = 0.333333333333333;
b166.l = 0.333333333333333;
b167.l = 0.333333333333333;
b168.l = 0.333333333333333;
b169.l = 0.333333333333333;
b170.l = 0.333333333333333;
b171.l = 0.333333333333333;
b172.l = 0.333333333333333;
b173.l = 0.333333333333333;
b174.l = 0.333333333333333;
b175.l = 0.333333333333333;
b176.l = 0.333333333333333;
b177.l = 0.333333333333333;
b178.l = 0.333333333333333;
b179.l = 0.333333333333333;
b180.l = 0.333333333333333;
b181.l = 0.333333333333333;
b182.l = 0.333333333333333;
b183.l = 0.333333333333333;
b184.l = 0.333333333333333;
x185.l = 2.14561894299879;
x186.l = 1.79162527256323;
x187.l = 1.17603833426161;
x188.l = 1.25486024268257;
x189.l = 1.2836102793508;
x190.l = 1.17503911240045;
x191.l = 1.34904996794172;
x192.l = 2.44126276055211;
x193.l = 0.227365846688063;
x194.l = 0.227365846688063;
x195.l = 0.227365846688063;
x196.l = 0.21392857775621;
x197.l = 0.21392857775621;
x198.l = 0.21392857775621;
x199.l = 0.180149757435327;
x200.l = 0.180149757435327;
x201.l = 0.180149757435327;
x202.l = 0.18550451138525;
x203.l = 0.18550451138525;
x204.l = 0.18550451138525;
x205.l = 0.18736563632853;
x206.l = 0.18736563632853;
x207.l = 0.18736563632853;
x208.l = 0.18007938427425;
x209.l = 0.18007938427425;
x210.l = 0.18007938427425;
x211.l = 0.19143199539568;
x212.l = 0.19143199539568;
x213.l = 0.19143199539568;
x214.l = 0.236469665393064;
x215.l = 0.236469665393064;
x216.l = 0.236469665393064;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2022-05-24 Git hash: 1198c186
Imprint / Privacy Policy / License: CC-BY 4.0