MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance sssd22-08persp

Stochastic Service System Design. Servers are modeled as M/M/1 queues, and a set of customers must be assigned to the servers which can be operated at different service levels. The objective is to minimize assignment and operating costs.
Perspective reformulation of sssd22-08.
Formats ams gms lp mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
511212.18850000 p1 ( gdx sol )
(infeas: 2e-15)
508748.97200000 p2 ( gdx sol )
(infeas: 0)
508719.49130000 p3 ( gdx sol )
(infeas: 4e-12)
508713.73100000 p4 ( gdx sol )
(infeas: 4e-16)
Other points (infeas > 1e-08)  
Dual Bounds
347711.45940000 (ANTIGONE)
294267.11730000 (BARON)
291619.00070000 (COUENNE)
508713.68770000 (GUROBI)
508748.97200000 (LINDO)
434386.78800000 (SCIP)
3601.56305200 (SHOT)
References Elhedhli, Samir, Service System Design with Immobile Servers, Stochastic Demand, and Congestion, Manufacturing & Service Operations Management, 8:1, 2006, 92-97.
Günlük, Oktay and Linderoth, Jeff T, Perspective reformulations of mixed integer nonlinear programs with indicator variables, Mathematical Programming, 124:1-2, 2010, 183-205.
Günlük, Oktay and Linderoth, Jeff T, Perspective Reformulation and Applications. In Lee, Jon and Leyffer, Sven, Eds, Mixed Integer Nonlinear Programming, Springer, 2012, 61-89.
Application Service System Design
Added to library 24 Feb 2014
Problem type MBQCP
#Variables 232
#Binary Variables 200
#Integer Variables 0
#Nonlinear Variables 56
#Nonlinear Binary Variables 24
#Nonlinear Integer Variables 0
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 208
#Nonlinear Nonzeros in Objective 0
#Constraints 86
#Linear Constraints 62
#Quadratic Constraints 24
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 520
#Nonlinear Nonzeros in Jacobian 72
#Nonzeros in (Upper-Left) Hessian of Lagrangian 144
#Nonzeros in Diagonal of Hessian of Lagrangian 0
#Blocks in Hessian of Lagrangian 8
Minimal blocksize in Hessian of Lagrangian 7
Maximal blocksize in Hessian of Lagrangian 7
Average blocksize in Hessian of Lagrangian 7.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 5.1483e-01
Maximal coefficient 9.0114e+04
Infeasibility of initial point 0.3333
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         87       31        0       56        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        233       33      200        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        729      657       72        0
*
*  Solve m using MINLP minimizing objvar;


Variables  b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19
          ,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36
          ,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53
          ,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70
          ,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87
          ,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103
          ,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116
          ,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,b129
          ,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141,b142
          ,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154,b155
          ,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167,b168
          ,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180,b181
          ,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193,b194
          ,b195,b196,b197,b198,b199,b200,x201,x202,x203,x204,x205,x206,x207
          ,x208,x209,x210,x211,x212,x213,x214,x215,x216,x217,x218,x219,x220
          ,x221,x222,x223,x224,x225,x226,x227,x228,x229,x230,x231,x232,objvar;

Positive Variables  x201,x202,x203,x204,x205,x206,x207,x208,x209,x210,x211
          ,x212,x213,x214,x215,x216,x217,x218,x219,x220,x221,x222,x223,x224
          ,x225,x226,x227,x228,x229,x230,x231,x232;

Binary Variables  b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17
          ,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34
          ,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51
          ,b52,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68
          ,b69,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85
          ,b86,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101
          ,b102,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114
          ,b115,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127
          ,b128,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140
          ,b141,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153
          ,b154,b155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166
          ,b167,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179
          ,b180,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192
          ,b193,b194,b195,b196,b197,b198,b199,b200;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87;


e1..  - 208.792389579557*b1 - 217.220995426524*b2 - 219.328963727163*b3
      - 335.651755242039*b4 - 357.330454546574*b5 - 346.288650280159*b6
      - 266.831359835122*b7 - 456.270698882756*b8 - 598.603823802659*b9
      - 472.76096139298*b10 - 440.895090698712*b11 - 587.391445247834*b12
      - 645.591064716537*b13 - 842.289923714761*b14 - 121.085274825763*b15
      - 827.593258115164*b16 - 197.884040776939*b17 - 265.670270246372*b18
      - 277.19406330985*b19 - 300.515348924627*b20 - 219.737117743978*b21
      - 29.7605015712574*b22 - 340.166179406841*b23 - 283.856776912609*b24
      - 530.371712601246*b25 - 666.342201226349*b26 - 688.262656274643*b27
      - 749.884149250718*b28 - 433.188232823123*b29 - 179.889568973086*b30
      - 781.513894249438*b31 - 721.578241933227*b32 - 385.365331428565*b33
      - 397.310751547733*b34 - 394.709618384088*b35 - 488.796381342564*b36
      - 69.1228046698849*b37 - 353.774426772291*b38 - 291.790884852353*b39
      - 571.723273315939*b40 - 155.222386730589*b41 - 99.2899226882794*b42
      - 86.2196187420574*b43 - 139.670924625187*b44 - 254.800918398364*b45
      - 272.399716241454*b46 - 63.6669462920938*b47 - 233.124068769687*b48
      - 420.433611725096*b49 - 392.743531304658*b50 - 381.78274307056*b51
      - 492.339258879241*b52 - 221.765410784674*b53 - 471.509884685296*b54
      - 198.32681114913*b55 - 616.946947175197*b56 - 367.630309121365*b57
      - 460.597168454611*b58 - 476.106543114266*b59 - 507.291994932137*b60
      - 326.794364462657*b61 - 129.791978899027*b62 - 548.796138386955*b63
      - 473.395038736004*b64 - 325.447206766794*b65 - 490.469713344171*b66
      - 523.815789714576*b67 - 505.034257474519*b68 - 692.411426088716*b69
      - 200.55621733527*b70 - 775.7926466443*b71 - 384.953901158781*b72
      - 90.6602362937041*b73 - 141.123442371391*b74 - 161.956213738203*b75
      - 109.048636049605*b76 - 478.505506249041*b77 - 280.921006907188*b78
      - 370.54186916052*b79 - 90.0885571257413*b80 - 298.187335183707*b81
      - 446.806547302861*b82 - 478.682808405872*b83 - 442.741538849651*b84
      - 691.38591250887*b85 - 245.191525741426*b86 - 733.088602836978*b87
      - 307.319437419187*b88 - 337.888982918121*b89 - 419.167156191436*b90
      - 433.274587404946*b91 - 450.445951605631*b92 - 325.562889404499*b93
      - 140.625297509477*b94 - 505.752773889592*b95 - 406.547094311348*b96
      - 222.184700988121*b97 - 240.706858859471*b98 - 241.574880311851*b99
      - 291.369743048828*b100 - 15.2686323496579*b101 - 176.809772873193*b102
      - 203.189667115456*b103 - 327.65591970594*b104 - 129.877228863824*b105
      - 213.864055621011*b106 - 228.904588570087*b107 - 267.714721001121*b108
      - 296.129922427254*b109 - 120.997544341877*b110 - 335.613750709585*b111
      - 282.466658282013*b112 - 672.898864110698*b113 - 756.187216722396*b114
      - 765.66484083818*b115 - 865.192465249929*b116 - 236.611873044182*b117
      - 434.91997598185*b118 - 723.10739482889*b119 - 901.139517259906*b120
      - 219.602048486048*b121 - 201.157387320931*b122 - 198.047001409938*b123
      - 323.278842853872*b124 - 375.740471906088*b125 - 384.320011362398*b126
      - 227.915246894889*b127 - 461.206035499698*b128 - 136.697588440332*b129
      - 195.795672174039*b130 - 206.510139458451*b131 - 266.993643756477*b132
      - 266.428828703525*b133 - 172.197876959554*b134 - 285.213773004863*b135
      - 314.039353185424*b136 - 100.546799414253*b137 - 158.869600643741*b138
      - 169.177101793017*b139 - 192.372362299551*b140 - 196.928390780027*b141
      - 62.8591174163952*b142 - 238.906880310977*b143 - 194.625572987735*b144
      - 426.229131856612*b145 - 514.495326782553*b146 - 528.382010861139*b147
      - 570.004598026737*b148 - 306.963768408293*b149 - 192.514354981969*b150
      - 576.445077629097*b151 - 547.274100083715*b152 - 355.78132876986*b153
      - 441.081415856693*b154 - 455.950573614429*b155 - 472.925391866814*b156
      - 345.902082835143*b157 - 150.24855415155*b158 - 533.120100629792*b159
      - 425.427178535863*b160 - 312.501954887052*b161 - 342.776531219538*b162
      - 344.744206407029*b163 - 420.060812382554*b164 - 52.4443211841249*b165
      - 248.287530992381*b166 - 297.059157510037*b167 - 474.854530167614*b168
      - 304.572783869897*b169 - 413.92096155854*b170 - 436.177554965223*b171
      - 418.666286552571*b172 - 507.602151838219*b173 - 167.124705382621*b174
      - 599.946283215143*b175 - 318.432467752406*b176 - 428.280624*b177
      - 146.029695525341*b178 - 90.4403621070536*b179 - 443.1386765*b180
      - 145.975961746562*b181 - 88.8621264293527*b182 - 397.34356925*b183
      - 142.916859315786*b184 - 90.9090638831941*b185 - 292.49438275*b186
      - 113.954644649109*b187 - 75.4405570646217*b188 - 444.36193375*b189
      - 145.506402206668*b190 - 88.3118947061088*b191 - 277.65857175*b192
      - 112.736894888761*b193 - 76.1920106860745*b194 - 477.617688*b195
      - 153.675005321166*b196 - 92.4547040495498*b197 - 336.34625775*b198
      - 118.939551077852*b199 - 75.017245954943*b200 - 90113.9517259906*x201
      - 90113.9517259906*x202 - 90113.9517259906*x203 - 90113.9517259906*x204
      - 90113.9517259906*x205 - 90113.9517259906*x206 - 90113.9517259906*x207
      - 90113.9517259906*x208 + objvar =E= 0;

e2..    1.171932132*b1 + 1.380580128*b9 + 0.642148796*b17 + 1.365957869*b25
      + 0.883196807*b33 + 0.529359847*b41 + 0.944441234*b49 + 0.877264007*b57
      + 1.377561448*b65 + 0.849949624*b73 + 1.272241722*b81 + 0.725429288*b89
      + 0.514827484*b97 + 0.859331887*b105 + 1.257166993*b113
      + 1.166831024*b121 + 0.873786249*b129 + 0.571003843*b137
      + 0.894706799*b145 + 0.757692826*b153 + 0.793024066*b161
      + 0.914251523*b169 - 2.1220404046875*x209 - 4.244080809375*x210
      - 6.3661212140625*x211 =E= 0;

e3..    1.171932132*b2 + 1.380580128*b10 + 0.642148796*b18 + 1.365957869*b26
      + 0.883196807*b34 + 0.529359847*b42 + 0.944441234*b50 + 0.877264007*b58
      + 1.377561448*b66 + 0.849949624*b74 + 1.272241722*b82 + 0.725429288*b90
      + 0.514827484*b98 + 0.859331887*b106 + 1.257166993*b114
      + 1.166831024*b122 + 0.873786249*b130 + 0.571003843*b138
      + 0.894706799*b146 + 0.757692826*b154 + 0.793024066*b162
      + 0.914251523*b170 - 1.9799363876875*x212 - 3.959872775375*x213
      - 5.9398091630625*x214 =E= 0;

e4..    1.171932132*b3 + 1.380580128*b11 + 0.642148796*b19 + 1.365957869*b27
      + 0.883196807*b35 + 0.529359847*b43 + 0.944441234*b51 + 0.877264007*b59
      + 1.377561448*b67 + 0.849949624*b75 + 1.272241722*b83 + 0.725429288*b91
      + 0.514827484*b99 + 0.859331887*b107 + 1.257166993*b115
      + 1.166831024*b123 + 0.873786249*b131 + 0.571003843*b139
      + 0.894706799*b147 + 0.757692826*b155 + 0.793024066*b163
      + 0.914251523*b171 - 2.31103048*x215 - 4.62206096*x216 - 6.93309144*x217
      =E= 0;

e5..    1.171932132*b4 + 1.380580128*b12 + 0.642148796*b20 + 1.365957869*b28
      + 0.883196807*b36 + 0.529359847*b44 + 0.944441234*b52 + 0.877264007*b60
      + 1.377561448*b68 + 0.849949624*b76 + 1.272241722*b84 + 0.725429288*b92
      + 0.514827484*b100 + 0.859331887*b108 + 1.257166993*b116
      + 1.166831024*b124 + 0.873786249*b132 + 0.571003843*b140
      + 0.894706799*b148 + 0.757692826*b156 + 0.793024066*b164
      + 0.914251523*b172 - 2.1619703510625*x218 - 4.323940702125*x219
      - 6.4859110531875*x220 =E= 0;

e6..    1.171932132*b5 + 1.380580128*b13 + 0.642148796*b21 + 1.365957869*b29
      + 0.883196807*b37 + 0.529359847*b45 + 0.944441234*b53 + 0.877264007*b61
      + 1.377561448*b69 + 0.849949624*b77 + 1.272241722*b85 + 0.725429288*b93
      + 0.514827484*b101 + 0.859331887*b109 + 1.257166993*b117
      + 1.166831024*b125 + 0.873786249*b133 + 0.571003843*b141
      + 0.894706799*b149 + 0.757692826*b157 + 0.793024066*b165
      + 0.914251523*b173 - 1.9501097226875*x221 - 3.900219445375*x222
      - 5.8503291680625*x223 =E= 0;

e7..    1.171932132*b6 + 1.380580128*b14 + 0.642148796*b22 + 1.365957869*b30
      + 0.883196807*b38 + 0.529359847*b46 + 0.944441234*b54 + 0.877264007*b62
      + 1.377561448*b70 + 0.849949624*b78 + 1.272241722*b86 + 0.725429288*b94
      + 0.514827484*b102 + 0.859331887*b110 + 1.257166993*b118
      + 1.166831024*b126 + 0.873786249*b134 + 0.571003843*b142
      + 0.894706799*b150 + 0.757692826*b158 + 0.793024066*b166
      + 0.914251523*b174 - 2.32308593*x224 - 4.64617186*x225 - 6.96925779*x226
      =E= 0;

e8..    1.171932132*b7 + 1.380580128*b15 + 0.642148796*b23 + 1.365957869*b31
      + 0.883196807*b39 + 0.529359847*b47 + 0.944441234*b55 + 0.877264007*b63
      + 1.377561448*b71 + 0.849949624*b79 + 1.272241722*b87 + 0.725429288*b95
      + 0.514827484*b103 + 0.859331887*b111 + 1.257166993*b119
      + 1.166831024*b127 + 0.873786249*b135 + 0.571003843*b143
      + 0.894706799*b151 + 0.757692826*b159 + 0.793024066*b167
      + 0.914251523*b175 - 1.9885435838125*x227 - 3.977087167625*x228
      - 5.9656307514375*x229 =E= 0;

e9..    1.171932132*b8 + 1.380580128*b16 + 0.642148796*b24 + 1.365957869*b32
      + 0.883196807*b40 + 0.529359847*b48 + 0.944441234*b56 + 0.877264007*b64
      + 1.377561448*b72 + 0.849949624*b80 + 1.272241722*b88 + 0.725429288*b96
      + 0.514827484*b104 + 0.859331887*b112 + 1.257166993*b120
      + 1.166831024*b128 + 0.873786249*b136 + 0.571003843*b144
      + 0.894706799*b152 + 0.757692826*b160 + 0.793024066*b168
      + 0.914251523*b176 - 1.8590587860625*x230 - 3.718117572125*x231
      - 5.5771763581875*x232 =E= 0;

e10..    b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8 =E= 1;

e11..    b9 + b10 + b11 + b12 + b13 + b14 + b15 + b16 =E= 1;

e12..    b17 + b18 + b19 + b20 + b21 + b22 + b23 + b24 =E= 1;

e13..    b25 + b26 + b27 + b28 + b29 + b30 + b31 + b32 =E= 1;

e14..    b33 + b34 + b35 + b36 + b37 + b38 + b39 + b40 =E= 1;

e15..    b41 + b42 + b43 + b44 + b45 + b46 + b47 + b48 =E= 1;

e16..    b49 + b50 + b51 + b52 + b53 + b54 + b55 + b56 =E= 1;

e17..    b57 + b58 + b59 + b60 + b61 + b62 + b63 + b64 =E= 1;

e18..    b65 + b66 + b67 + b68 + b69 + b70 + b71 + b72 =E= 1;

e19..    b73 + b74 + b75 + b76 + b77 + b78 + b79 + b80 =E= 1;

e20..    b81 + b82 + b83 + b84 + b85 + b86 + b87 + b88 =E= 1;

e21..    b89 + b90 + b91 + b92 + b93 + b94 + b95 + b96 =E= 1;

e22..    b97 + b98 + b99 + b100 + b101 + b102 + b103 + b104 =E= 1;

e23..    b105 + b106 + b107 + b108 + b109 + b110 + b111 + b112 =E= 1;

e24..    b113 + b114 + b115 + b116 + b117 + b118 + b119 + b120 =E= 1;

e25..    b121 + b122 + b123 + b124 + b125 + b126 + b127 + b128 =E= 1;

e26..    b129 + b130 + b131 + b132 + b133 + b134 + b135 + b136 =E= 1;

e27..    b137 + b138 + b139 + b140 + b141 + b142 + b143 + b144 =E= 1;

e28..    b145 + b146 + b147 + b148 + b149 + b150 + b151 + b152 =E= 1;

e29..    b153 + b154 + b155 + b156 + b157 + b158 + b159 + b160 =E= 1;

e30..    b161 + b162 + b163 + b164 + b165 + b166 + b167 + b168 =E= 1;

e31..    b169 + b170 + b171 + b172 + b173 + b174 + b175 + b176 =E= 1;

e32..    b177 + b178 + b179 =L= 1;

e33..    b180 + b181 + b182 =L= 1;

e34..    b183 + b184 + b185 =L= 1;

e35..    b186 + b187 + b188 =L= 1;

e36..    b189 + b190 + b191 =L= 1;

e37..    b192 + b193 + b194 =L= 1;

e38..    b195 + b196 + b197 =L= 1;

e39..    b198 + b199 + b200 =L= 1;

e40..  - b177 + x209 =L= 0;

e41..  - b178 + x210 =L= 0;

e42..  - b179 + x211 =L= 0;

e43..  - b180 + x212 =L= 0;

e44..  - b181 + x213 =L= 0;

e45..  - b182 + x214 =L= 0;

e46..  - b183 + x215 =L= 0;

e47..  - b184 + x216 =L= 0;

e48..  - b185 + x217 =L= 0;

e49..  - b186 + x218 =L= 0;

e50..  - b187 + x219 =L= 0;

e51..  - b188 + x220 =L= 0;

e52..  - b189 + x221 =L= 0;

e53..  - b190 + x222 =L= 0;

e54..  - b191 + x223 =L= 0;

e55..  - b192 + x224 =L= 0;

e56..  - b193 + x225 =L= 0;

e57..  - b194 + x226 =L= 0;

e58..  - b195 + x227 =L= 0;

e59..  - b196 + x228 =L= 0;

e60..  - b197 + x229 =L= 0;

e61..  - b198 + x230 =L= 0;

e62..  - b199 + x231 =L= 0;

e63..  - b200 + x232 =L= 0;

e64.. x209*b177 + x209*x201 - x201*b177 =L= 0;

e65.. x210*b178 + x210*x201 - x201*b178 =L= 0;

e66.. x211*b179 + x211*x201 - x201*b179 =L= 0;

e67.. x212*b180 + x212*x202 - x202*b180 =L= 0;

e68.. x213*b181 + x213*x202 - x202*b181 =L= 0;

e69.. x214*b182 + x214*x202 - x202*b182 =L= 0;

e70.. x215*b183 + x215*x203 - x203*b183 =L= 0;

e71.. x216*b184 + x216*x203 - x203*b184 =L= 0;

e72.. x217*b185 + x217*x203 - x203*b185 =L= 0;

e73.. x218*b186 + x218*x204 - x204*b186 =L= 0;

e74.. x219*b187 + x219*x204 - x204*b187 =L= 0;

e75.. x220*b188 + x220*x204 - x204*b188 =L= 0;

e76.. x221*b189 + x221*x205 - x205*b189 =L= 0;

e77.. x222*b190 + x222*x205 - x205*b190 =L= 0;

e78.. x223*b191 + x223*x205 - x205*b191 =L= 0;

e79.. x224*b192 + x224*x206 - x206*b192 =L= 0;

e80.. x225*b193 + x225*x206 - x206*b193 =L= 0;

e81.. x226*b194 + x226*x206 - x206*b194 =L= 0;

e82.. x227*b195 + x227*x207 - x207*b195 =L= 0;

e83.. x228*b196 + x228*x207 - x207*b196 =L= 0;

e84.. x229*b197 + x229*x207 - x207*b197 =L= 0;

e85.. x230*b198 + x230*x208 - x208*b198 =L= 0;

e86.. x231*b199 + x231*x208 - x208*b199 =L= 0;

e87.. x232*b200 + x232*x208 - x208*b200 =L= 0;

* set non-default levels
b1.l = 0.125;
b2.l = 0.125;
b3.l = 0.125;
b4.l = 0.125;
b5.l = 0.125;
b6.l = 0.125;
b7.l = 0.125;
b8.l = 0.125;
b9.l = 0.125;
b10.l = 0.125;
b11.l = 0.125;
b12.l = 0.125;
b13.l = 0.125;
b14.l = 0.125;
b15.l = 0.125;
b16.l = 0.125;
b17.l = 0.125;
b18.l = 0.125;
b19.l = 0.125;
b20.l = 0.125;
b21.l = 0.125;
b22.l = 0.125;
b23.l = 0.125;
b24.l = 0.125;
b25.l = 0.125;
b26.l = 0.125;
b27.l = 0.125;
b28.l = 0.125;
b29.l = 0.125;
b30.l = 0.125;
b31.l = 0.125;
b32.l = 0.125;
b33.l = 0.125;
b34.l = 0.125;
b35.l = 0.125;
b36.l = 0.125;
b37.l = 0.125;
b38.l = 0.125;
b39.l = 0.125;
b40.l = 0.125;
b41.l = 0.125;
b42.l = 0.125;
b43.l = 0.125;
b44.l = 0.125;
b45.l = 0.125;
b46.l = 0.125;
b47.l = 0.125;
b48.l = 0.125;
b49.l = 0.125;
b50.l = 0.125;
b51.l = 0.125;
b52.l = 0.125;
b53.l = 0.125;
b54.l = 0.125;
b55.l = 0.125;
b56.l = 0.125;
b57.l = 0.125;
b58.l = 0.125;
b59.l = 0.125;
b60.l = 0.125;
b61.l = 0.125;
b62.l = 0.125;
b63.l = 0.125;
b64.l = 0.125;
b65.l = 0.125;
b66.l = 0.125;
b67.l = 0.125;
b68.l = 0.125;
b69.l = 0.125;
b70.l = 0.125;
b71.l = 0.125;
b72.l = 0.125;
b73.l = 0.125;
b74.l = 0.125;
b75.l = 0.125;
b76.l = 0.125;
b77.l = 0.125;
b78.l = 0.125;
b79.l = 0.125;
b80.l = 0.125;
b81.l = 0.125;
b82.l = 0.125;
b83.l = 0.125;
b84.l = 0.125;
b85.l = 0.125;
b86.l = 0.125;
b87.l = 0.125;
b88.l = 0.125;
b89.l = 0.125;
b90.l = 0.125;
b91.l = 0.125;
b92.l = 0.125;
b93.l = 0.125;
b94.l = 0.125;
b95.l = 0.125;
b96.l = 0.125;
b97.l = 0.125;
b98.l = 0.125;
b99.l = 0.125;
b100.l = 0.125;
b101.l = 0.125;
b102.l = 0.125;
b103.l = 0.125;
b104.l = 0.125;
b105.l = 0.125;
b106.l = 0.125;
b107.l = 0.125;
b108.l = 0.125;
b109.l = 0.125;
b110.l = 0.125;
b111.l = 0.125;
b112.l = 0.125;
b113.l = 0.125;
b114.l = 0.125;
b115.l = 0.125;
b116.l = 0.125;
b117.l = 0.125;
b118.l = 0.125;
b119.l = 0.125;
b120.l = 0.125;
b121.l = 0.125;
b122.l = 0.125;
b123.l = 0.125;
b124.l = 0.125;
b125.l = 0.125;
b126.l = 0.125;
b127.l = 0.125;
b128.l = 0.125;
b129.l = 0.125;
b130.l = 0.125;
b131.l = 0.125;
b132.l = 0.125;
b133.l = 0.125;
b134.l = 0.125;
b135.l = 0.125;
b136.l = 0.125;
b137.l = 0.125;
b138.l = 0.125;
b139.l = 0.125;
b140.l = 0.125;
b141.l = 0.125;
b142.l = 0.125;
b143.l = 0.125;
b144.l = 0.125;
b145.l = 0.125;
b146.l = 0.125;
b147.l = 0.125;
b148.l = 0.125;
b149.l = 0.125;
b150.l = 0.125;
b151.l = 0.125;
b152.l = 0.125;
b153.l = 0.125;
b154.l = 0.125;
b155.l = 0.125;
b156.l = 0.125;
b157.l = 0.125;
b158.l = 0.125;
b159.l = 0.125;
b160.l = 0.125;
b161.l = 0.125;
b162.l = 0.125;
b163.l = 0.125;
b164.l = 0.125;
b165.l = 0.125;
b166.l = 0.125;
b167.l = 0.125;
b168.l = 0.125;
b169.l = 0.125;
b170.l = 0.125;
b171.l = 0.125;
b172.l = 0.125;
b173.l = 0.125;
b174.l = 0.125;
b175.l = 0.125;
b176.l = 0.125;
b177.l = 0.333333333333333;
b178.l = 0.333333333333333;
b179.l = 0.333333333333333;
b180.l = 0.333333333333333;
b181.l = 0.333333333333333;
b182.l = 0.333333333333333;
b183.l = 0.333333333333333;
b184.l = 0.333333333333333;
b185.l = 0.333333333333333;
b186.l = 0.333333333333333;
b187.l = 0.333333333333333;
b188.l = 0.333333333333333;
b189.l = 0.333333333333333;
b190.l = 0.333333333333333;
b191.l = 0.333333333333333;
b192.l = 0.333333333333333;
b193.l = 0.333333333333333;
b194.l = 0.333333333333333;
b195.l = 0.333333333333333;
b196.l = 0.333333333333333;
b197.l = 0.333333333333333;
b198.l = 0.333333333333333;
b199.l = 0.333333333333333;
b200.l = 0.333333333333333;
x201.l = 1.54709273216915;
x202.l = 1.86524351951116;
x203.l = 1.26103309126974;
x204.l = 1.47633486853575;
x205.l = 1.9493854998908;
x206.l = 1.24633304234106;
x207.l = 1.84229622639189;
x208.l = 2.26070041222848;
x209.l = 0.202465175639891;
x210.l = 0.202465175639891;
x211.l = 0.202465175639891;
x212.l = 0.216996508535208;
x213.l = 0.216996508535208;
x214.l = 0.216996508535208;
x215.l = 0.185908098992273;
x216.l = 0.185908098992273;
x217.l = 0.185908098992273;
x218.l = 0.198725797992028;
x219.l = 0.198725797992028;
x220.l = 0.198725797992028;
x221.l = 0.220315440844991;
x222.l = 0.220315440844991;
x223.l = 0.220315440844991;
x224.l = 0.184943345272639;
x225.l = 0.184943345272639;
x226.l = 0.184943345272639;
x227.l = 0.216057262585254;
x228.l = 0.216057262585254;
x229.l = 0.216057262585254;
x230.l = 0.231105808203074;
x231.l = 0.231105808203074;
x232.l = 0.231105808203074;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2022-08-11 Git hash: f176bd52
Imprint / Privacy Policy / License: CC-BY 4.0