MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance sssd25-08
Stochastic Service System Design. Servers are modeled as M/M/1 queues, and a set of customers must be assigned to the servers which can be operated at different service levels. The objective is to minimize assignment and operating costs.
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 271856.88530000 (ALPHAECP) 472047.21470000 (ANTIGONE) 472093.07800000 (AOA) 472093.07750000 (BARON) 471761.31860000 (BONMIN) 145509.16040000 (COUENNE) 462857.27950000 (LINDO) 472093.06960000 (SCIP) 472093.07800000 (SHOT) |
Referencesⓘ | Elhedhli, Samir, Service System Design with Immobile Servers, Stochastic Demand, and Congestion, Manufacturing & Service Operations Management, 8:1, 2006, 92-97. Günlük, Oktay and Linderoth, Jeff T, Perspective reformulations of mixed integer nonlinear programs with indicator variables, Mathematical Programming, 124:1-2, 2010, 183-205. Günlük, Oktay and Linderoth, Jeff T, Perspective Reformulation and Applications. In Lee, Jon and Leyffer, Sven, Eds, Mixed Integer Nonlinear Programming, Springer, 2012, 61-89. |
Applicationⓘ | Service System Design |
Added to libraryⓘ | 24 Feb 2014 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 256 |
#Binary Variablesⓘ | 224 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 8 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 232 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 89 |
#Linear Constraintsⓘ | 65 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 24 |
Operands in Gen. Nonlin. Functionsⓘ | div |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 544 |
#Nonlinear Nonzeros in Jacobianⓘ | 24 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 8 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 8 |
#Blocks in Hessian of Lagrangianⓘ | 8 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 5.1854e-01 |
Maximal coefficientⓘ | 9.7792e+04 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 90 34 0 56 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 257 33 224 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 777 753 24 0 * * Solve m using MINLP minimizing objvar; Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19 ,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36 ,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53 ,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70 ,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87 ,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103 ,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116 ,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,b129 ,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141,b142 ,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154,b155 ,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167,b168 ,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180,b181 ,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193,b194 ,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205,b206,b207 ,b208,b209,b210,b211,b212,b213,b214,b215,b216,b217,b218,b219,b220 ,b221,b222,b223,b224,x225,x226,x227,x228,x229,x230,x231,x232,x233 ,x234,x235,x236,x237,x238,x239,x240,x241,x242,x243,x244,x245,x246 ,x247,x248,x249,x250,x251,x252,x253,x254,x255,x256,objvar; Positive Variables x225,x226,x227,x228,x229,x230,x231,x232,x233,x234,x235 ,x236,x237,x238,x239,x240,x241,x242,x243,x244,x245,x246,x247,x248 ,x249,x250,x251,x252,x253,x254,x255,x256; Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17 ,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34 ,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51 ,b52,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68 ,b69,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85 ,b86,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101 ,b102,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114 ,b115,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127 ,b128,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140 ,b141,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153 ,b154,b155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166 ,b167,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179 ,b180,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192 ,b193,b194,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205 ,b206,b207,b208,b209,b210,b211,b212,b213,b214,b215,b216,b217,b218 ,b219,b220,b221,b222,b223,b224; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90; e1.. - 280.015478914038*b1 - 189.288120842359*b2 - 358.701846798178*b3 - 244.241788814099*b4 - 87.1139426934879*b5 - 293.741196412808*b6 - 336.938455480881*b7 - 111.132571007002*b8 - 286.116429243528*b9 - 94.4274398343128*b10 - 367.133290072151*b11 - 614.928585758936*b12 - 438.125051677529*b13 - 661.999904132064*b14 - 653.595947484945*b15 - 130.785249996106*b16 - 566.03927069428*b17 - 544.19787715837*b18 - 685.403607293646*b19 - 61.9928174906746*b20 - 249.350690730561*b21 - 140.90906841319*b22 - 291.079482338546*b23 - 487.780669163489*b24 - 307.783912643805*b25 - 389.802681405466*b26 - 321.287736832449*b27 - 302.412987027206*b28 - 409.775140258547*b29 - 257.071751692557*b30 - 175.756094849851*b31 - 423.669959460143*b32 - 198.720546344334*b33 - 344.400501168956*b34 - 208.952089209986*b35 - 430.759407352372*b36 - 496.60632325866*b37 - 397.911936291162*b38 - 287.774297498385*b39 - 423.00329072926*b40 - 237.886155953882*b41 - 402.402251795838*b42 - 250.825045089316*b43 - 487.547042019378*b44 - 568.292182452832*b45 - 448.087612764076*b46 - 320.335765847799*b47 - 490.167899018651*b48 - 82.5933869454248*b49 - 146.448682875232*b50 - 163.452067908051*b51 - 276.730055005735*b52 - 273.179876407695*b53 - 277.803053042602*b54 - 233.55256356785*b55 - 197.393244057853*b56 - 242.330997032288*b57 - 284.424030137382*b58 - 363.208830908102*b59 - 294.232555311306*b60 - 325.118162311176*b61 - 299.415482100549*b62 - 259.44789476115*b63 - 309.940616688054*b64 - 222.150724870321*b65 - 217.727646620661*b66 - 281.713073665437*b67 - 38.1502291749332*b68 - 111.211204176216*b69 - 65.2805816148505*b70 - 112.460639083103*b71 - 198.645643676751*b72 - 421.360912334564*b73 - 534.87426176758*b74 - 475.741816107137*b75 - 352.749929176345*b76 - 531.612082625615*b77 - 280.525826419076*b78 - 137.095239440206*b79 - 575.7770749398*b80 - 351.497850461778*b81 - 405.962649168703*b82 - 432.857369642276*b83 - 166.720740905278*b84 - 330.52780833779*b85 - 114.389081222937*b86 - 41.8820705320675*b87 - 413.561667150737*b88 - 355.579499050136*b89 - 345.47038524768*b90 - 430.854677384648*b91 - 30.0482829027383*b92 - 165.478010935782*b93 - 77.9360845070815*b94 - 173.890485436882*b95 - 312.249412706219*b96 - 571.744627524166*b97 - 471.624923879672*b98 - 710.164602376854*b99 - 261.66021735256*b100 - 51.0557284250918*b101 - 360.062547274952*b102 - 481.891096039651*b103 - 365.513365723344*b104 - 399.490496656953*b105 - 451.769553607549*b106 - 453.738932169927*b107 - 199.843756585705*b108 - 365.058314613238*b109 - 139.586752483676*b110 - 106.426979864288*b111 - 456.438637193436*b112 - 211.390523065096*b113 - 296.965394771203*b114 - 206.36024981947*b115 - 299.399758359544*b116 - 365.873253476953*b117 - 268.037142407783*b118 - 192.166689939902*b119 - 340.763818025386*b120 - 481.943276793998*b121 - 476.896032723565*b122 - 605.44200242736*b123 - 60.3345060768244*b124 - 248.698186669248*b125 - 116.370732650035*b126 - 226.41276825065*b127 - 437.786018380522*b128 - 30.1659216101491*b129 - 155.310005469338*b130 - 62.4308577168494*b131 - 374.072749206918*b132 - 359.364574319466*b133 - 371.508574814077*b134 - 313.678661245913*b135 - 236.696687500268*b136 - 342.959779885782*b137 - 243.309240877052*b138 - 455.730833322708*b139 - 283.158964050427*b140 - 108.06453872561*b141 - 345.515272872869*b142 - 397.292371711029*b143 - 159.09397067448*b144 - 340.634583609159*b145 - 206.294587181224*b146 - 430.280594816681*b147 - 370.924429483938*b148 - 179.264171022001*b149 - 428.921838070769*b150 - 471.281103740823*b151 - 99.7808461848959*b152 - 429.05922386952*b153 - 327.680298879118*b154 - 523.80193255273*b155 - 283.644715807908*b156 - 86.3875702765374*b157 - 352.398403352795*b158 - 431.172951509966*b159 - 233.993325343613*b160 - 91.8637559279284*b161 - 74.4877021670081*b162 - 187.82221969771*b163 - 430.026945476274*b164 - 357.507784036688*b165 - 448.524700206143*b166 - 411.998956245666*b167 - 173.986760082346*b168 - 712.788231206667*b169 - 461.036283507276*b170 - 848.881524448158*b171 - 792.186240949472*b172 - 442.016565853182*b173 - 897.591929381804*b174 - 977.916607937591*b175 - 293.430402870014*b176 - 296.344320059065*b177 - 364.765594186771*b178 - 329.815794036051*b179 - 226.890063118006*b180 - 348.731381211396*b181 - 177.942341296454*b182 - 96.1183797630128*b183 - 387.154702581006*b184 - 375.426218481344*b185 - 391.26936411233*b186 - 451.354346179335*b187 - 63.5187751545787*b188 - 243.436478427032*b189 - 13.2008683362507*b190 - 119.70059288035*b191 - 372.810300964428*b192 - 541.819732823667*b193 - 384.192269657313*b194 - 642.582705586696*b195 - 495.331779409205*b196 - 251.913229553801*b197 - 573.728023842047*b198 - 649.809996665778*b199 - 263.33328155498*b200 - 308.75573475*b201 - 117.915710216419*b202 - 77.288604398212*b203 - 343.15653775*b204 - 134.206428189155*b205 - 89.0183352697708*b206 - 346.81576575*b207 - 124.324585731045*b208 - 78.9498261215339*b209 - 430.096916*b210 - 159.051822644712*b211 - 102.5864677272*b212 - 320.07779375*b213 - 124.923391537198*b214 - 82.7758203632668*b215 - 435.247357*b216 - 157.010160043992*b217 - 100.02041833951*b218 - 449.605928*b219 - 160.64955939217*b220 - 101.851712426192*b221 - 467.05921525*b222 - 164.49253653471*b223 - 103.53764225876*b224 - 97791.6607937591*x225 - 97791.6607937591*x226 - 97791.6607937591*x227 - 97791.6607937591*x228 - 97791.6607937591*x229 - 97791.6607937591*x230 - 97791.6607937591*x231 - 97791.6607937591*x232 + objvar =E= 0; e2.. 0.702116132*b1 + 1.146214016*b9 + 1.057594812*b17 + 0.578586645*b25 + 0.886844823*b33 + 1.009856519*b41 + 0.734231906*b49 + 1.097667431*b57 + 0.530191888*b65 + 0.982025936*b73 + 0.89025893*b81 + 0.672977112*b89 + 1.170284932*b97 + 0.698680975*b105 + 0.518537857*b113 + 1.10995052*b121 + 0.728712913*b129 + 0.970767027*b137 + 0.868933215*b145 + 0.827259074*b153 + 0.935216386*b161 + 1.484063515*b169 + 0.608384089*b177 + 0.739092857*b185 + 0.992346352*b193 - 2.14967788359375*x233 - 4.2993557671875*x234 - 6.44903365078125*x235 =E= 0; e3.. 0.702116132*b2 + 1.146214016*b10 + 1.057594812*b18 + 0.578586645*b26 + 0.886844823*b34 + 1.009856519*b42 + 0.734231906*b50 + 1.097667431*b58 + 0.530191888*b66 + 0.982025936*b74 + 0.89025893*b82 + 0.672977112*b90 + 1.170284932*b98 + 0.698680975*b106 + 0.518537857*b114 + 1.10995052*b122 + 0.728712913*b130 + 0.970767027*b138 + 0.868933215*b146 + 0.827259074*b154 + 0.935216386*b162 + 1.484063515*b170 + 0.608384089*b178 + 0.739092857*b186 + 0.992346352*b194 - 2.56580796953125*x236 - 5.1316159390625*x237 - 7.69742390859375*x238 =E= 0; e4.. 0.702116132*b3 + 1.146214016*b11 + 1.057594812*b19 + 0.578586645*b27 + 0.886844823*b35 + 1.009856519*b43 + 0.734231906*b51 + 1.097667431*b59 + 0.530191888*b67 + 0.982025936*b75 + 0.89025893*b83 + 0.672977112*b91 + 1.170284932*b99 + 0.698680975*b107 + 0.518537857*b115 + 1.10995052*b123 + 0.728712913*b131 + 0.970767027*b139 + 0.868933215*b147 + 0.827259074*b155 + 0.935216386*b163 + 1.484063515*b171 + 0.608384089*b179 + 0.739092857*b187 + 0.992346352*b195 - 1.9969216*x239 - 3.9938432*x240 - 5.9907648*x241 =E= 0; e5.. 0.702116132*b4 + 1.146214016*b12 + 1.057594812*b20 + 0.578586645*b28 + 0.886844823*b36 + 1.009856519*b44 + 0.734231906*b52 + 1.097667431*b60 + 0.530191888*b68 + 0.982025936*b76 + 0.89025893*b84 + 0.672977112*b92 + 1.170284932*b100 + 0.698680975*b108 + 0.518537857*b116 + 1.10995052*b124 + 0.728712913*b132 + 0.970767027*b140 + 0.868933215*b148 + 0.827259074*b156 + 0.935216386*b164 + 1.484063515*b172 + 0.608384089*b180 + 0.739092857*b188 + 0.992346352*b196 - 2.71876277421875*x242 - 5.4375255484375*x243 - 8.15628832265625*x244 =E= 0; e6.. 0.702116132*b5 + 1.146214016*b13 + 1.057594812*b21 + 0.578586645*b29 + 0.886844823*b37 + 1.009856519*b45 + 0.734231906*b53 + 1.097667431*b61 + 0.530191888*b69 + 0.982025936*b77 + 0.89025893*b85 + 0.672977112*b93 + 1.170284932*b101 + 0.698680975*b109 + 0.518537857*b117 + 1.10995052*b125 + 0.728712913*b133 + 0.970767027*b141 + 0.868933215*b149 + 0.827259074*b157 + 0.935216386*b165 + 1.484063515*b173 + 0.608384089*b181 + 0.739092857*b189 + 0.992346352*b197 - 2.37853163984375*x245 - 4.7570632796875*x246 - 7.13559491953125*x247 =E= 0; e7.. 0.702116132*b6 + 1.146214016*b14 + 1.057594812*b22 + 0.578586645*b30 + 0.886844823*b38 + 1.009856519*b46 + 0.734231906*b54 + 1.097667431*b62 + 0.530191888*b70 + 0.982025936*b78 + 0.89025893*b86 + 0.672977112*b94 + 1.170284932*b102 + 0.698680975*b110 + 0.518537857*b118 + 1.10995052*b126 + 0.728712913*b134 + 0.970767027*b142 + 0.868933215*b150 + 0.827259074*b158 + 0.935216386*b166 + 1.484063515*b174 + 0.608384089*b182 + 0.739092857*b190 + 0.992346352*b198 - 2.55386938125*x248 - 5.1077387625*x249 - 7.66160814375*x250 =E= 0; e8.. 0.702116132*b7 + 1.146214016*b15 + 1.057594812*b23 + 0.578586645*b31 + 0.886844823*b39 + 1.009856519*b47 + 0.734231906*b55 + 1.097667431*b63 + 0.530191888*b71 + 0.982025936*b79 + 0.89025893*b87 + 0.672977112*b95 + 1.170284932*b103 + 0.698680975*b111 + 0.518537857*b119 + 1.10995052*b127 + 0.728712913*b135 + 0.970767027*b143 + 0.868933215*b151 + 0.827259074*b159 + 0.935216386*b167 + 1.484063515*b175 + 0.608384089*b183 + 0.739092857*b191 + 0.992346352*b199 - 2.5636700640625*x251 - 5.127340128125*x252 - 7.6910101921875*x253 =E= 0; e9.. 0.702116132*b8 + 1.146214016*b16 + 1.057594812*b24 + 0.578586645*b32 + 0.886844823*b40 + 1.009856519*b48 + 0.734231906*b56 + 1.097667431*b64 + 0.530191888*b72 + 0.982025936*b80 + 0.89025893*b88 + 0.672977112*b96 + 1.170284932*b104 + 0.698680975*b112 + 0.518537857*b120 + 1.10995052*b128 + 0.728712913*b136 + 0.970767027*b144 + 0.868933215*b152 + 0.827259074*b160 + 0.935216386*b168 + 1.484063515*b176 + 0.608384089*b184 + 0.739092857*b192 + 0.992346352*b200 - 2.55024607265625*x254 - 5.1004921453125*x255 - 7.65073821796875*x256 =E= 0; e10.. b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8 =E= 1; e11.. b9 + b10 + b11 + b12 + b13 + b14 + b15 + b16 =E= 1; e12.. b17 + b18 + b19 + b20 + b21 + b22 + b23 + b24 =E= 1; e13.. b25 + b26 + b27 + b28 + b29 + b30 + b31 + b32 =E= 1; e14.. b33 + b34 + b35 + b36 + b37 + b38 + b39 + b40 =E= 1; e15.. b41 + b42 + b43 + b44 + b45 + b46 + b47 + b48 =E= 1; e16.. b49 + b50 + b51 + b52 + b53 + b54 + b55 + b56 =E= 1; e17.. b57 + b58 + b59 + b60 + b61 + b62 + b63 + b64 =E= 1; e18.. b65 + b66 + b67 + b68 + b69 + b70 + b71 + b72 =E= 1; e19.. b73 + b74 + b75 + b76 + b77 + b78 + b79 + b80 =E= 1; e20.. b81 + b82 + b83 + b84 + b85 + b86 + b87 + b88 =E= 1; e21.. b89 + b90 + b91 + b92 + b93 + b94 + b95 + b96 =E= 1; e22.. b97 + b98 + b99 + b100 + b101 + b102 + b103 + b104 =E= 1; e23.. b105 + b106 + b107 + b108 + b109 + b110 + b111 + b112 =E= 1; e24.. b113 + b114 + b115 + b116 + b117 + b118 + b119 + b120 =E= 1; e25.. b121 + b122 + b123 + b124 + b125 + b126 + b127 + b128 =E= 1; e26.. b129 + b130 + b131 + b132 + b133 + b134 + b135 + b136 =E= 1; e27.. b137 + b138 + b139 + b140 + b141 + b142 + b143 + b144 =E= 1; e28.. b145 + b146 + b147 + b148 + b149 + b150 + b151 + b152 =E= 1; e29.. b153 + b154 + b155 + b156 + b157 + b158 + b159 + b160 =E= 1; e30.. b161 + b162 + b163 + b164 + b165 + b166 + b167 + b168 =E= 1; e31.. b169 + b170 + b171 + b172 + b173 + b174 + b175 + b176 =E= 1; e32.. b177 + b178 + b179 + b180 + b181 + b182 + b183 + b184 =E= 1; e33.. b185 + b186 + b187 + b188 + b189 + b190 + b191 + b192 =E= 1; e34.. b193 + b194 + b195 + b196 + b197 + b198 + b199 + b200 =E= 1; e35.. b201 + b202 + b203 =L= 1; e36.. b204 + b205 + b206 =L= 1; e37.. b207 + b208 + b209 =L= 1; e38.. b210 + b211 + b212 =L= 1; e39.. b213 + b214 + b215 =L= 1; e40.. b216 + b217 + b218 =L= 1; e41.. b219 + b220 + b221 =L= 1; e42.. b222 + b223 + b224 =L= 1; e43.. - b201 + x233 =L= 0; e44.. - b202 + x234 =L= 0; e45.. - b203 + x235 =L= 0; e46.. - b204 + x236 =L= 0; e47.. - b205 + x237 =L= 0; e48.. - b206 + x238 =L= 0; e49.. - b207 + x239 =L= 0; e50.. - b208 + x240 =L= 0; e51.. - b209 + x241 =L= 0; e52.. - b210 + x242 =L= 0; e53.. - b211 + x243 =L= 0; e54.. - b212 + x244 =L= 0; e55.. - b213 + x245 =L= 0; e56.. - b214 + x246 =L= 0; e57.. - b215 + x247 =L= 0; e58.. - b216 + x248 =L= 0; e59.. - b217 + x249 =L= 0; e60.. - b218 + x250 =L= 0; e61.. - b219 + x251 =L= 0; e62.. - b220 + x252 =L= 0; e63.. - b221 + x253 =L= 0; e64.. - b222 + x254 =L= 0; e65.. - b223 + x255 =L= 0; e66.. - b224 + x256 =L= 0; e67.. -x225/(1 + x225) + x233 =L= 0; e68.. -x225/(1 + x225) + x234 =L= 0; e69.. -x225/(1 + x225) + x235 =L= 0; e70.. -x226/(1 + x226) + x236 =L= 0; e71.. -x226/(1 + x226) + x237 =L= 0; e72.. -x226/(1 + x226) + x238 =L= 0; e73.. -x227/(1 + x227) + x239 =L= 0; e74.. -x227/(1 + x227) + x240 =L= 0; e75.. -x227/(1 + x227) + x241 =L= 0; e76.. -x228/(1 + x228) + x242 =L= 0; e77.. -x228/(1 + x228) + x243 =L= 0; e78.. -x228/(1 + x228) + x244 =L= 0; e79.. -x229/(1 + x229) + x245 =L= 0; e80.. -x229/(1 + x229) + x246 =L= 0; e81.. -x229/(1 + x229) + x247 =L= 0; e82.. -x230/(1 + x230) + x248 =L= 0; e83.. -x230/(1 + x230) + x249 =L= 0; e84.. -x230/(1 + x230) + x250 =L= 0; e85.. -x231/(1 + x231) + x251 =L= 0; e86.. -x231/(1 + x231) + x252 =L= 0; e87.. -x231/(1 + x231) + x253 =L= 0; e88.. -x232/(1 + x232) + x254 =L= 0; e89.. -x232/(1 + x232) + x255 =L= 0; e90.. -x232/(1 + x232) + x256 =L= 0; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f