MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance st_e37
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 0.00104167 (ANTIGONE) 0.00104172 (BARON) 0.00104172 (COUENNE) 0.00104171 (LINDO) 0.00104123 (SCIP) |
| Referencesⓘ | Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002. Beck, J V and Arnold, K J, Parameter Estimation in Engineering and Science, Wiley, New York, 1977. |
| Sourceⓘ | BARON book instance misc/e37 |
| Added to libraryⓘ | 03 Sep 2002 |
| Problem typeⓘ | NLP |
| #Variablesⓘ | 4 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 4 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | nonlinear |
| Objective curvatureⓘ | nonconcave |
| #Nonzeros in Objectiveⓘ | 4 |
| #Nonlinear Nonzeros in Objectiveⓘ | 4 |
| #Constraintsⓘ | 1 |
| #Linear Constraintsⓘ | 1 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | exp mul sqr |
| Constraints curvatureⓘ | linear |
| #Nonzeros in Jacobianⓘ | 2 |
| #Nonlinear Nonzeros in Jacobianⓘ | 0 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 16 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 4 |
| #Blocks in Hessian of Lagrangianⓘ | 1 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 4 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 4 |
| Average blocksize in Hessian of Lagrangianⓘ | 4.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.2700e-02 |
| Maximal coefficientⓘ | 1.0000e+01 |
| Infeasibility of initial pointⓘ | 0 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 2 1 0 1 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 5 5 0 0 0 0 0 0
* FX 2
*
* Nonzero counts
* Total const NL DLL
* 7 3 4 0
*
* Solve m using NLP minimizing objvar;
Variables x1,x2,objvar,x4,x5;
Positive Variables x1,x2;
Equations e1,e2;
e1.. x1 - x2 =L= 0;
e2.. -(sqr((-1.9837) + x4 + x5) + sqr((-0.8393) + exp(-x1)*x4 + exp(-x2)*x5) +
sqr((-0.4305) + exp(-2*x1)*x4 + exp(-2*x2)*x5) + sqr((-0.2441) + exp(-3*x1
)*x4 + exp(-3*x2)*x5) + sqr((-0.1248) + exp(-4*x1)*x4 + exp(-4*x2)*x5) +
sqr((-0.0981) + exp(-5*x1)*x4 + exp(-5*x2)*x5) + sqr((-0.0549) + exp(-6*x1
)*x4 + exp(-6*x2)*x5) + sqr((-0.0174) + exp(-7*x1)*x4 + exp(-7*x2)*x5) +
sqr((-0.0249) + exp(-8*x1)*x4 + exp(-8*x2)*x5) + sqr((-0.0154) + exp(-9*x1
)*x4 + exp(-9*x2)*x5) + sqr((-0.0127) + exp(-10*x1)*x4 + exp(-10*x2)*x5))
+ objvar =E= 0;
* set non-default bounds
x1.up = 100;
x2.up = 100;
x4.fx = 1;
x5.fx = 1;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

