MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance st_glmp_kky
| Formatsⓘ | ams gms lp mod nl osil pip py | 
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -2.50000000 (ANTIGONE) -2.50000000 (BARON) -2.50000000 (COUENNE) -2.50000000 (CPLEX) -2.50000005 (GUROBI) -2.50000000 (LINDO) -2.50000000 (SCIP) | 
| Referencesⓘ | Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002. Konno, H, Kuno, T, and Yajima, Y, Global optimization of a generalized convex multiplicative function, Journal of Global Optimization, 4:1, 1994, 47-62. | 
| Added to libraryⓘ | 03 Sep 2002 | 
| Problem typeⓘ | QP | 
| #Variablesⓘ | 7 | 
| #Binary Variablesⓘ | 0 | 
| #Integer Variablesⓘ | 0 | 
| #Nonlinear Variablesⓘ | 4 | 
| #Nonlinear Binary Variablesⓘ | 0 | 
| #Nonlinear Integer Variablesⓘ | 0 | 
| Objective Senseⓘ | min | 
| Objective typeⓘ | quadratic | 
| Objective curvatureⓘ | indefinite | 
| #Nonzeros in Objectiveⓘ | 5 | 
| #Nonlinear Nonzeros in Objectiveⓘ | 4 | 
| #Constraintsⓘ | 13 | 
| #Linear Constraintsⓘ | 13 | 
| #Quadratic Constraintsⓘ | 0 | 
| #Polynomial Constraintsⓘ | 0 | 
| #Signomial Constraintsⓘ | 0 | 
| #General Nonlinear Constraintsⓘ | 0 | 
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | linear | 
| #Nonzeros in Jacobianⓘ | 31 | 
| #Nonlinear Nonzeros in Jacobianⓘ | 0 | 
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 4 | 
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 | 
| #Blocks in Hessian of Lagrangianⓘ | 2 | 
| Minimal blocksize in Hessian of Lagrangianⓘ | 2 | 
| Maximal blocksize in Hessian of Lagrangianⓘ | 2 | 
| Average blocksize in Hessian of Lagrangianⓘ | 2.0 | 
| #Semicontinuitiesⓘ | 0 | 
| #Nonlinear Semicontinuitiesⓘ | 0 | 
| #SOS type 1ⓘ | 0 | 
| #SOS type 2ⓘ | 0 | 
| Minimal coefficientⓘ | 1.0000e+00 | 
| Maximal coefficientⓘ | 8.0000e+00 | 
| Infeasibility of initial pointⓘ | 10 | 
| Sparsity Jacobianⓘ |  | 
| Sparsity Hessian of Lagrangianⓘ |  | 
$offlisting * * Equation counts * Total E G L N X C B * 14 6 0 8 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 8 8 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 37 33 4 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,objvar; Positive Variables x1,x2; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14; e1.. - 5*x1 + 8*x2 =L= 24; e2.. - 5*x1 - 8*x2 =L= 100; e3.. - 6*x1 + 3*x2 =L= 100; e4.. - 4*x1 - 5*x2 =L= -10; e5.. 5*x1 - 8*x2 =L= 100; e6.. 5*x1 + 8*x2 =L= 44; e7.. 6*x1 - 3*x2 =L= 15; e8.. 4*x1 + 5*x2 =L= 100; e9.. -(x4*x5 + x6*x7) - x3 + objvar =E= 0; e10.. 3*x1 - 4*x2 - x3 =E= 0; e11.. x1 + 2*x2 - x4 =E= 1.5; e12.. 2*x1 - x2 - x5 =E= -4; e13.. x1 - 2*x2 - x6 =E= -8.5; e14.. 2*x1 + x2 - x7 =E= 1; * set non-default bounds x1.up = 10; x2.up = 10; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc