MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance st_iqpbk1
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -621.48782560 (ANTIGONE) -621.48782560 (BARON) -621.48782500 (COUENNE) -621.48782500 (CPLEX) -621.48782500 (GUROBI) -621.48782510 (LINDO) -621.48782500 (SCIP) |
| Referencesⓘ | Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002. Shectman, J P, Finite Algorithms for Global Optimization of Concave Programs and General Quadratic Programs, PhD thesis, Department of Mechanical and Industrial Engineering, University of Illinois, Urbana Champagne, 1999. |
| Sourceⓘ | BARON book instance iqp/iqpbk1 |
| Added to libraryⓘ | 03 Sep 2002 |
| Problem typeⓘ | QP |
| #Variablesⓘ | 8 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 8 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | quadratic |
| Objective curvatureⓘ | indefinite |
| #Nonzeros in Objectiveⓘ | 8 |
| #Nonlinear Nonzeros in Objectiveⓘ | 8 |
| #Constraintsⓘ | 7 |
| #Linear Constraintsⓘ | 7 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | linear |
| #Nonzeros in Jacobianⓘ | 14 |
| #Nonlinear Nonzeros in Jacobianⓘ | 0 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 64 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 8 |
| #Blocks in Hessian of Lagrangianⓘ | 1 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 8 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 8 |
| Average blocksize in Hessian of Lagrangianⓘ | 8.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 5.0000e-01 |
| Maximal coefficientⓘ | 7.0000e+00 |
| Infeasibility of initial pointⓘ | 0 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 8 1 7 0 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 9 9 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 23 15 8 0
*
* Solve m using NLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,x7,x8,objvar;
Equations e1,e2,e3,e4,e5,e6,e7,e8;
e1.. - x1 + x2 =G= -1;
e2.. - x2 + x3 =G= -1.05;
e3.. - x3 + x4 =G= -1.1;
e4.. - x4 + x5 =G= -1.15;
e5.. - x5 + x6 =G= -1.2;
e6.. - x6 + x7 =G= -1.25;
e7.. - x7 + x8 =G= -1.3;
e8.. -(0.845*x1*x1 + 7*x1 + 0.5*x1*x2 + 6*x2 + x1*x3 + 5*x3 + 1.5*x1*x4 + 4*x4
+ 2*x1*x5 + 3*x5 + 2.5*x1*x6 + 2*x6 + 3*x1*x7 + x7 + 3.5*x1*x8 + 0.5*x2*
x1 + 0.845*x2*x2 + 0.5*x2*x3 + x2*x4 + 1.5*x2*x5 + 2*x2*x6 + 2.5*x2*x7 + 3
*x2*x8 + x3*x1 + 0.5*x3*x2 + 0.845*x3*x3 + 0.5*x3*x4 + x3*x5 + 1.5*x3*x6
+ 2*x3*x7 + 2.5*x3*x8 + 1.5*x4*x1 + x4*x2 + 0.5*x4*x3 + 0.845*x4*x4 + 0.5
*x4*x5 + x4*x6 + 1.5*x4*x7 + 2*x4*x8 + 2*x5*x1 + 1.5*x5*x2 + x5*x3 + 0.5*
x5*x4 + 0.845*x5*x5 + 0.5*x5*x6 + x5*x7 + 1.5*x5*x8 + 2.5*x6*x1 + 2*x6*x2
+ 1.5*x6*x3 + x6*x4 + 0.5*x6*x5 + 0.845*x6*x6 + 0.5*x6*x7 + x6*x8 + 3*x7*
x1 + 2.5*x7*x2 + 2*x7*x3 + 1.5*x7*x4 + x7*x5 + 0.5*x7*x6 + 0.845*x7*x7 +
0.5*x7*x8 + 3.5*x8*x1 + 3*x8*x2 + 2.5*x8*x3 + 2*x8*x4 + 1.5*x8*x5 + x8*x6
+ 0.5*x8*x7 + 0.845*x8*x8) + objvar =E= 0;
* set non-default bounds
x1.lo = -1; x1.up = 1;
x2.lo = -2.1; x2.up = 2;
x3.lo = -3.2; x3.up = 3;
x4.lo = -4.3; x4.up = 4;
x5.lo = -5.4; x5.up = 5;
x6.lo = -6.5; x6.up = 6;
x7.lo = -7.6; x7.up = 7;
x8.lo = -8.7; x8.up = 8;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

