MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance st_jcbpaf2
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -794.85591480 (ANTIGONE) -794.85591480 (BARON) -794.85591400 (COUENNE) -794.85591400 (CPLEX) -794.85591400 (GUROBI) -794.85591410 (LINDO) -794.85591400 (SCIP) |
Referencesⓘ | Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002. Shectman, J P, Finite Algorithms for Global Optimization of Concave Programs and General Quadratic Programs, PhD thesis, Department of Mechanical and Industrial Engineering, University of Illinois, Urbana Champagne, 1999. |
Sourceⓘ | BARON book instance iqp/jcbpaf2 |
Added to libraryⓘ | 03 Sep 2002 |
Problem typeⓘ | QP |
#Variablesⓘ | 10 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 10 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 10 |
#Nonlinear Nonzeros in Objectiveⓘ | 10 |
#Constraintsⓘ | 13 |
#Linear Constraintsⓘ | 13 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 105 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 10 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 5 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 9.0000e+00 |
Infeasibility of initial pointⓘ | 2 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 14 1 2 11 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 11 11 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 116 106 10 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14; e1.. x1 + 7*x2 + 5*x3 + 5*x4 - 6*x6 - 3*x7 - 3*x8 + 5*x9 - 7*x10 =L= 80; e2.. - 3*x1 + 3*x2 + 8*x3 + 7*x4 - 9*x5 - 7*x6 - 9*x7 + 8*x9 - 7*x10 =L= 57; e3.. x1 + x3 + 3*x4 + 8*x5 + 9*x6 + 9*x8 - 7*x9 - 8*x10 =L= 92; e4.. - x1 - 2*x2 + 2*x3 + 9*x5 + 5*x6 - 3*x7 + x8 - x9 - 5*x10 =L= 55; e5.. - 5*x1 + 8*x2 - 8*x3 + 3*x5 + 4*x7 - 5*x8 - 2*x9 + 9*x10 =L= 76; e6.. 4*x1 - x2 + 6*x3 - 4*x4 - 7*x5 - 8*x6 - 7*x7 + 6*x8 - 2*x9 - 9*x10 =L= 14; e7.. 7*x2 + 4*x3 + 9*x5 - 6*x8 - 5*x9 - 5*x10 =L= 47; e8.. - 5*x1 - x2 + 7*x4 - x5 + 2*x6 + 5*x7 - 8*x8 - 5*x9 + 2*x10 =L= 51; e9.. - 4*x1 - 7*x2 - 9*x4 + 2*x5 + 6*x6 - 9*x7 + x8 - 5*x9 =L= 36; e10.. - 2*x1 + 6*x2 + 8*x4 - 6*x5 + 8*x6 + 8*x7 + 5*x8 + 2*x9 - 7*x10 =L= 92; e11.. x1 + x2 + x3 - 2*x4 + x5 + x6 + x7 + 4*x8 + x9 + 3*x10 =L= 200; e12.. x1 + x2 + x3 + x4 + x5 =G= 1; e13.. x6 + x7 + x8 + x9 + x10 =G= 2; e14.. -(x1*x6 - x1 - x6 + x2*x7 - 2*x2 - 2*x7 + x3*x8 - 3*x3 - 3*x8 + x4*x9 - 4 *x4 - 4*x9 + x5*x10 - 5*x5 - 5*x10) + objvar =E= 0; * set non-default bounds x1.up = 100; x2.up = 100; x3.up = 100; x4.up = 100; x5.up = 100; x6.up = 100; x7.up = 100; x8.up = 100; x9.up = 100; x10.up = 100; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f