MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance st_miqp5
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -333.88925000 (ALPHAECP) -333.88888920 (ANTIGONE) -333.88888920 (BARON) -333.88888890 (BONMIN) -333.88888890 (COUENNE) -333.88888890 (CPLEX) -333.88888890 (GUROBI) -333.88888890 (LINDO) -333.88888920 (SCIP) -333.88888890 (SHOT) |
| Referencesⓘ | Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002. Shectman, J P, Finite Algorithms for Global Optimization of Concave Programs and General Quadratic Programs, PhD thesis, Department of Mechanical and Industrial Engineering, University of Illinois, Urbana Champagne, 1999. |
| Sourceⓘ | BARON book instance iqp/miqp5 |
| Added to libraryⓘ | 01 Sep 2002 |
| Problem typeⓘ | MIQP |
| #Variablesⓘ | 7 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 2 |
| #Nonlinear Variablesⓘ | 2 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | quadratic |
| Objective curvatureⓘ | convex |
| #Nonzeros in Objectiveⓘ | 5 |
| #Nonlinear Nonzeros in Objectiveⓘ | 2 |
| #Constraintsⓘ | 13 |
| #Linear Constraintsⓘ | 13 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | linear |
| #Nonzeros in Jacobianⓘ | 69 |
| #Nonlinear Nonzeros in Jacobianⓘ | 0 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 2 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 2 |
| #Blocks in Hessian of Lagrangianⓘ | 2 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 5.2480e-02 |
| Maximal coefficientⓘ | 1.9271e+02 |
| Infeasibility of initial pointⓘ | 5.269e-17 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 14 1 3 10 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 8 6 0 2 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 75 73 2 0
*
* Solve m using MINLP minimizing objvar;
Variables i1,i2,x3,x4,x5,x6,x7,objvar;
Integer Variables i1,i2;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14;
e1.. - 1.93414531698*x3 + 1.80314509442*x4 + 2.89695789508*x5
+ 0.729324957489*x6 + 3.8837442915*x7 =L= 60;
e2.. - 1.13150591228*x3 + 1.10500971967*x4 - 1.01838569726*x5
+ 2.62556984696*x6 + 4.85468036438*x7 =L= 60;
e3.. - 0.0524800119769*x3 - 0.904837825133*x4 + 0.209520819817*x5
- 0.291729982996*x6 - 0.222506183367*x7 =L= 0;
e4.. 0.0524800119769*x3 + 0.904837825133*x4 - 0.209520819817*x5
+ 0.291729982996*x6 + 0.222506183367*x7 =L= 1;
e5.. 0.445391966818*x3 + 0.301519984248*x4 + 0.587645368916*x5
- 0.145864991498*x6 - 0.586607210695*x7 =L= 0;
e6.. - 0.445391966818*x3 - 0.301519984248*x4 - 0.587645368916*x5
+ 0.145864991498*x6 + 0.586607210695*x7 =L= 1;
e7.. - 0.328188665272*x3 + 0.199986646277*x4 + 0.506106406938*x5
- 0.583459965992*x6 + 0.505695871289*x7 =G= 0;
e8.. - 0.345682002598*x3 - 0.101625962101*x4 + 0.57594668021*x5
+ 0.729324957489*x6 + 0.0809113394063*x7 =G= 0;
e9.. 0.756087294764*x3 - 0.200079270407*x4 + 0.151379235251*x5
+ 0.145864991498*x6 + 0.586607210695*x7 =G= 0;
e10.. - i1 + 0.0524800119769*x3 + 0.904837825133*x4 - 0.209520819817*x5
+ 0.291729982996*x6 + 0.222506183367*x7 =L= 0;
e11.. i1 - 0.0524800119769*x3 - 0.904837825133*x4 + 0.209520819817*x5
- 0.291729982996*x6 - 0.222506183367*x7 =L= 0;
e12.. - i2 - 0.445391966818*x3 - 0.301519984248*x4 - 0.587645368916*x5
+ 0.145864991498*x6 + 0.586607210695*x7 =L= 0;
e13.. i2 + 0.445391966818*x3 + 0.301519984248*x4 + 0.587645368916*x5
- 0.145864991498*x6 - 0.586607210695*x7 =L= 0;
e14.. -(5*x6*x6 - 0.875189948987*x6 + 52*x7*x7 - 192.710582631*x7)
+ 54.0615511462*x3 + 45.2691026456*x4 + 33.0896119339*x5 + objvar =E= 0;
* set non-default bounds
i1.up = 1;
i2.up = 1;
x3.lo = -7.24380468458; x3.up = 22.6826188429;
x4.lo = -6.0023781122; x4.up = 3.80464419615;
x5.lo = -0.797166188733; x5.up = 11.5189336042;
x6.lo = -8.75189948987; x6.up = 14.5864991498;
x7.lo = 8.98296319621E-17; x7.up = 19.4187214575;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

