MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance st_ph2
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -1028.11728500 (ANTIGONE) -1028.11728500 (BARON) -1028.11728400 (COUENNE) -1028.11728400 (CPLEX) -1028.11728400 (GUROBI) -1028.11728400 (LINDO) -1028.11728400 (SCIP) |
| Referencesⓘ | Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002. Shectman, J P and Sahinidis, N V, A finite algorithm for global minimization of separable concave programs, Journal of Global Optimization, 12:1, 1998, 1-36. Shectman, J P, Finite Algorithms for Global Optimization of Concave Programs and General Quadratic Programs, PhD thesis, Department of Mechanical and Industrial Engineering, University of Illinois, Urbana Champagne, 1999. |
| Added to libraryⓘ | 03 Sep 2002 |
| Problem typeⓘ | QP |
| #Variablesⓘ | 6 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 6 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | quadratic |
| Objective curvatureⓘ | concave |
| #Nonzeros in Objectiveⓘ | 6 |
| #Nonlinear Nonzeros in Objectiveⓘ | 6 |
| #Constraintsⓘ | 5 |
| #Linear Constraintsⓘ | 5 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | linear |
| #Nonzeros in Jacobianⓘ | 24 |
| #Nonlinear Nonzeros in Jacobianⓘ | 0 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 6 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 6 |
| #Blocks in Hessian of Lagrangianⓘ | 6 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 5.0000e-01 |
| Maximal coefficientⓘ | 9.0000e+00 |
| Infeasibility of initial pointⓘ | 0 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 6 1 0 5 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 7 7 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 31 25 6 0
*
* Solve m using NLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,objvar;
Positive Variables x1,x2,x3,x4,x5,x6;
Equations e1,e2,e3,e4,e5,e6;
e1.. 6*x1 + x2 + 9*x4 + 3*x5 + 5*x6 =L= 96;
e2.. x1 + 7*x3 + 6*x4 + 2*x5 + 2*x6 =L= 72;
e3.. 5*x1 + 4*x2 + x3 + 3*x4 + 8*x5 =L= 84;
e4.. 9*x1 + x2 + 2*x4 + 7*x5 + 6*x6 =L= 100;
e5.. 2*x1 + 6*x4 + 3*x5 + 9*x6 =L= 80;
e6.. -(6*x1 - 3*sqr(x1) - 2.5*sqr(x2) + 5*x2 - 2*sqr(x3) + 4*x3 - 1.5*sqr(x4)
+ 3*x4 - sqr(x5) + 2*x5 - 0.5*sqr(x6) + x6) + objvar =E= 0;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

