MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance st_robot
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 0.00000000 (ANTIGONE) 0.00000000 (BARON) 0.00000000 (COUENNE) 0.00000000 (GUROBI) 0.00000000 (LINDO) 0.00000000 (SCIP) |
| Referencesⓘ | Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002. Tsai, L-W and Morgan, A P, Solving the kinematics of the most general six- and five-degree-of-freedom manipulators by continuation methods, Journal of Mechanics, Transmissions, and Automation in Design}", year = "1985, 107:2, 189-200. |
| Sourceⓘ | BARON book instance input/robot |
| Added to libraryⓘ | 03 Sep 2002 |
| Problem typeⓘ | QCP |
| #Variablesⓘ | 8 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 8 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | constant |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 0 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 8 |
| #Linear Constraintsⓘ | 1 |
| #Quadratic Constraintsⓘ | 7 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 24 |
| #Nonlinear Nonzeros in Jacobianⓘ | 16 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 14 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 8 |
| #Blocks in Hessian of Lagrangianⓘ | 5 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.6 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.6370e-03 |
| Maximal coefficientⓘ | 1.0000e+00 |
| Infeasibility of initial pointⓘ | 1 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 9 9 0 0 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 9 9 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 25 9 16 0
*
* Solve m using NLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,x7,x8,objvar;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9;
e1.. 0.004731*x1*x3 - 0.1238*x1 - 0.3578*x2*x3 - 0.001637*x2 - 0.9338*x4 + x7
=E= 0.3571;
e2.. 0.2238*x1*x3 + 0.2638*x1 + 0.7623*x2*x3 - 0.07745*x2 - 0.6734*x4 - x7
=E= 0.6022;
e3.. x6*x8 + 0.3578*x1 + 0.004731*x2 =E= 0;
e4.. - 0.7623*x1 + 0.2238*x2 =E= -0.3461;
e5.. sqr(x1) + sqr(x2) =E= 1;
e6.. sqr(x3) + sqr(x4) =E= 1;
e7.. sqr(x5) + sqr(x6) =E= 1;
e8.. sqr(x7) + sqr(x8) =E= 1;
e9.. objvar =E= 0;
* set non-default bounds
x1.lo = -1; x1.up = 1;
x2.lo = -1; x2.up = 1;
x3.lo = -1; x3.up = 1;
x4.lo = -1; x4.up = 1;
x5.lo = -1; x5.up = 1;
x6.lo = -1; x6.up = 1;
x7.lo = -1; x7.up = 1;
x8.lo = -1; x8.up = 1;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

