MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance st_rv2
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | -64.48069517 (ANTIGONE) -64.48069519 (BARON) -64.48069511 (COUENNE) -64.48069510 (CPLEX) -64.48069511 (GUROBI) -64.48069511 (LINDO) -64.48069510 (SCIP) |
| Referencesⓘ | Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002. Shectman, J P and Sahinidis, N V, A finite algorithm for global minimization of separable concave programs, Journal of Global Optimization, 12:1, 1998, 1-36. Shectman, J P, Finite Algorithms for Global Optimization of Concave Programs and General Quadratic Programs, PhD thesis, Department of Mechanical and Industrial Engineering, University of Illinois, Urbana Champagne, 1999. |
| Added to libraryⓘ | 03 Sep 2002 |
| Problem typeⓘ | QP |
| #Variablesⓘ | 20 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 20 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | quadratic |
| Objective curvatureⓘ | concave |
| #Nonzeros in Objectiveⓘ | 20 |
| #Nonlinear Nonzeros in Objectiveⓘ | 20 |
| #Constraintsⓘ | 10 |
| #Linear Constraintsⓘ | 10 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | linear |
| #Nonzeros in Jacobianⓘ | 160 |
| #Nonlinear Nonzeros in Jacobianⓘ | 0 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 20 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 20 |
| #Blocks in Hessian of Lagrangianⓘ | 20 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.5000e-04 |
| Maximal coefficientⓘ | 9.0000e+00 |
| Infeasibility of initial pointⓘ | 0 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 11 1 0 10 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 21 21 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 181 161 20 0
*
* Solve m using NLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
,x20,objvar;
Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17
,x18,x19,x20;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11;
e1.. 6*x1 + 2*x2 + 4*x3 + 3*x5 + 4*x6 + 9*x7 + 5*x9 + x10 + 9*x11 + 6*x12
+ 7*x14 + 9*x15 + 2*x16 + 8*x18 + 2*x19 + 4*x20 =L= 405;
e2.. 6*x1 + 5*x2 + x3 + 8*x4 + 4*x6 + 3*x7 + 9*x8 + 6*x10 + 4*x11 + 7*x12
+ 5*x13 + 2*x15 + 5*x16 + 8*x17 + 9*x19 + 8*x20 =L= 450;
e3.. 8*x2 + 6*x3 + 2*x4 + 6*x5 + 4*x7 + 4*x8 + 6*x9 + 9*x11 + 4*x12 + 6*x13
+ 9*x14 + 9*x16 + 9*x17 + 3*x18 + x20 =L= 430;
e4.. 8*x1 + 7*x3 + 3*x4 + 2*x5 + x6 + 7*x8 + 4*x9 + 7*x10 + 3*x12 + 4*x13
+ x14 + 6*x15 + 2*x17 + 8*x18 + 9*x19 =L= 360;
e5.. x1 + 5*x2 + 5*x4 + 5*x5 + x6 + 3*x7 + 5*x9 + 7*x10 + 4*x11 + 6*x13
+ x14 + 3*x15 + 4*x16 + 3*x18 + 5*x19 + 5*x20 =L= 315;
e6.. x1 + 8*x2 + 7*x3 + x5 + 6*x6 + x7 + 6*x8 + 7*x10 + 3*x11 + 6*x12
+ 4*x14 + 6*x15 + x16 + 4*x17 + x19 + 4*x20 =L= 330;
e7.. 5*x2 + 8*x3 + 7*x4 + 3*x6 + 3*x7 + 8*x8 + 6*x9 + 6*x11 + 4*x12 + 3*x13
+ 4*x15 + 2*x16 + 5*x17 + 2*x18 + 4*x20 =L= 350;
e8.. x1 + 3*x3 + 2*x4 + 7*x5 + 2*x7 + x8 + x9 + 7*x10 + 4*x12 + 3*x13
+ 5*x14 + 3*x16 + 6*x17 + 3*x18 + x19 =L= 245;
e9.. 5*x1 + 5*x2 + 2*x4 + x5 + 9*x6 + 7*x8 + 4*x9 + 8*x10 + 5*x11 + 2*x13
+ 4*x14 + 4*x15 + 4*x17 + 8*x18 + 9*x19 + x20 =L= 390;
e10.. x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13
+ x14 + x15 + x16 + x17 + x18 + x19 + x20 =L= 200;
e11.. -(-0.00015*sqr(x1) - 0.0051*x1 - 0.00245*sqr(x2) - 0.2205*x2 - 0.00095*
sqr(x3) - 0.0171*x3 - 0.0038*sqr(x4) - 0.6384*x4 - 0.0029*sqr(x5) - 0.435
*x5 - 0.0024*sqr(x6) - 0.4704*x6 - 0.0034*sqr(x7) - 0.4556*x7 - 0.0018*
sqr(x8) - 0.2916*x8 - 0.00305*sqr(x9) - 0.0549*x9 - 0.00025*sqr(x10) -
0.0245*x10 - 0.00195*sqr(x11) - 0.3588*x11 - 0.0008*sqr(x12) - 0.1456*x12
- 0.0035*sqr(x13) - 0.672*x13 - 0.0027*sqr(x14) - 0.5184*x14 - 0.002*
sqr(x15) - 0.016*x15 - 0.0026*sqr(x16) - 0.1404*x16 - 0.0048*sqr(x17) -
0.2592*x17 - 0.00275*sqr(x18) - 0.418*x18 - 0.00235*sqr(x19) - 0.1081*x19
- 0.00275*sqr(x20) - 0.264*x20) + objvar =E= 0;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

