MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance supplychainr1_030510
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 860440.15780000 (ANTIGONE) 860440.15780000 (BARON) 860440.08000000 (COUENNE) 860440.15780000 (LINDO) 860440.15780000 (SCIP) 125674.86050000 (SHOT) |
| Referencesⓘ | Nyberg, Axel, Grossmann, I E, and Westerlund, Tapio, The optimal design of a three-echelon supply chain with inventories under uncertainty, 2012. |
| Sourceⓘ | r1-3510.gms from minlp.org model 157 |
| Applicationⓘ | Supply Chain Design with Stochastic Inventory Management |
| Added to libraryⓘ | 25 Sep 2013 |
| Problem typeⓘ | MBNLP |
| #Variablesⓘ | 230 |
| #Binary Variablesⓘ | 70 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 15 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | nonlinear |
| Objective curvatureⓘ | concave |
| #Nonzeros in Objectiveⓘ | 85 |
| #Nonlinear Nonzeros in Objectiveⓘ | 15 |
| #Constraintsⓘ | 280 |
| #Linear Constraintsⓘ | 280 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | sqrt |
| Constraints curvatureⓘ | linear |
| #Nonzeros in Jacobianⓘ | 920 |
| #Nonlinear Nonzeros in Jacobianⓘ | 0 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 15 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 15 |
| #Blocks in Hessian of Lagrangianⓘ | 15 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e-08 |
| Maximal coefficientⓘ | 1.5843e+05 |
| Infeasibility of initial pointⓘ | 1 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 281 81 10 190 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 231 161 70 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 1006 991 15 0
*
* Solve m using MINLP minimizing objvar;
Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19
,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36
,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53
,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70
,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,objvar
,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102
,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115
,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128
,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141
,x142,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154
,x155,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167
,x168,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180
,x181,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193
,x194,x195,x196,x197,x198,x199,x200,x201,x202,x203,x204,x205,x206
,x207,x208,x209,x210,x211,x212,x213,x214,x215,x216,x217,x218,x219
,x220,x221,x222,x223,x224,x225,x226,x227,x228,x229,x230,x231;
Positive Variables x71,x72,x73,x74,x75,x87,x88,x89,x90,x91,x92,x93,x94,x95
,x96,x97,x98,x99,x100,x101,x102,x103,x104,x105,x106,x107,x108,x109
,x110,x111,x112,x113,x114,x115,x116,x117,x118,x119,x120,x121,x122
,x123,x124,x125,x126,x127,x128,x129,x130,x131,x132,x133,x134,x135
,x136,x137,x138,x139,x140,x141,x142,x143,x144,x145,x146,x147,x148
,x149,x150,x151,x152,x153,x154,x155,x156,x157,x158,x159,x160,x161
,x162,x163,x164,x165,x166,x167,x168,x169,x170,x171,x172,x173,x174
,x175,x176,x177,x178,x179,x180,x181,x182,x183,x184,x185,x186,x187
,x188,x189,x190,x191,x192,x193,x194,x195,x196,x197,x198,x199,x200
,x201,x202,x203,x204,x205,x206,x207,x208,x209,x210,x211,x212,x213
,x214,x215,x216,x217,x218,x219,x220,x221,x222,x223,x224,x225,x226
,x227,x228,x229,x230,x231;
Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17
,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34
,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51
,b52,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68
,b69,b70;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142
,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155
,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168
,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181
,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194
,e195,e196,e197,e198,e199,e200,e201,e202,e203,e204,e205,e206,e207
,e208,e209,e210,e211,e212,e213,e214,e215,e216,e217,e218,e219,e220
,e221,e222,e223,e224,e225,e226,e227,e228,e229,e230,e231,e232,e233
,e234,e235,e236,e237,e238,e239,e240,e241,e242,e243,e244,e245,e246
,e247,e248,e249,e250,e251,e252,e253,e254,e255,e256,e257,e258,e259
,e260,e261,e262,e263,e264,e265,e266,e267,e268,e269,e270,e271,e272
,e273,e274,e275,e276,e277,e278,e279,e280,e281;
e1.. -(88.85300006996*sqrt(1e-8 + x107) + 192.23073994166*sqrt(1e-8 + x108) +
127.63233374696*sqrt(1e-8 + x109) + 419.48235478268*sqrt(1e-8 + x110) +
153.22284111554*sqrt(1e-8 + x111) + 11812.8060023653*sqrt(1e-8 + x76) +
1350.11753695442*sqrt(1e-8 + x77) + 13367.9894872554*sqrt(1e-8 + x78) +
22271.0227712868*sqrt(1e-8 + x79) + 3005.94387692899*sqrt(1e-8 + x80) +
8081.13134168897*sqrt(1e-8 + x81) + 2725.40259637536*sqrt(1e-8 + x82) +
17834.6321864598*sqrt(1e-8 + x83) + 11090.3708869987*sqrt(1e-8 + x84) +
34135.3450147183*sqrt(1e-8 + x85)) - 151717.47132*b16 - 158432.66708*b17
- 155503.75356*b18 - 153011.37904*b19 - 152922.12117*b20
- 31172.917964017*b21 - 50366.2988612629*b22 - 25232.3015865842*b23
- 13875.2777716691*b24 - 12894.0919466219*b25 - 104246.200740246*b26
- 23030.4692996671*b27 - 34080.9619919892*b28 - 23691.1338892398*b29
- 71485.9325093983*b30 - 20595.4230163802*b31 - 100964.014716159*b32
- 47584.642753328*b33 - 8366.15399075336*b34 - 12512.1539989574*b35
- 35986.4763418661*b36 - 46834.267934517*b37 - 35500.2352632821*b38
- 24409.7766590388*b39 - 48282.6225705813*b40 - 31041.4817687302*b41
- 53037.2328896265*b42 - 51459.7461120258*b43 - 22667.2580628975*b44
- 25228.9882448255*b45 - 37408.8375498868*b46 - 25200.7856772603*b47
- 36902.8071939517*b48 - 26504.6681149691*b49 - 49522.8366523017*b50
- 9271.93442865272*b51 - 144904.131180845*b52 - 24247.3790621604*b53
- 7667.40116108732*b54 - 22073.8762813933*b55 - 107488.43411253*b56
- 23226.4417178111*b57 - 34704.48655633*b58 - 25058.2307095212*b59
- 47407.2067673463*b60 - 21614.5566697948*b61 - 101949.658248026*b62
- 25381.2261639692*b63 - 8426.19414871674*b64 - 13579.8855675766*b65
- 107491.687838232*b66 - 43784.7477537411*b67 - 107221.380878763*b68
- 13362.229690641*b69 - 25676.6925875457*b70 + objvar
- 772.8645240165*x87 - 109.73384215925*x88 - 332.64598234875*x89
- 226.514334935*x90 - 159.627138782*x91 - 621.33045502625*x92
- 444.925267275*x93 - 198.06301532475*x94 - 357.5965626135*x95
- 80.6766666775*x96 - 242.0437770305*x97 - 630.31461703875*x98
- 485.8539167745*x99 - 239.8308926255*x100 - 408.49173769875*x101 =E= 0;
e2.. b1 + b6 + b11 - b16 =E= 0;
e3.. b2 + b7 + b12 - b17 =E= 0;
e4.. b3 + b8 + b13 - b18 =E= 0;
e5.. b4 + b9 + b14 - b19 =E= 0;
e6.. b5 + b10 + b15 - b20 =E= 0;
e7.. - b16 + b21 =L= 0;
e8.. - b16 + b22 =L= 0;
e9.. - b16 + b23 =L= 0;
e10.. - b16 + b24 =L= 0;
e11.. - b16 + b25 =L= 0;
e12.. - b16 + b26 =L= 0;
e13.. - b16 + b27 =L= 0;
e14.. - b16 + b28 =L= 0;
e15.. - b16 + b29 =L= 0;
e16.. - b16 + b30 =L= 0;
e17.. - b17 + b31 =L= 0;
e18.. - b17 + b32 =L= 0;
e19.. - b17 + b33 =L= 0;
e20.. - b17 + b34 =L= 0;
e21.. - b17 + b35 =L= 0;
e22.. - b17 + b36 =L= 0;
e23.. - b17 + b37 =L= 0;
e24.. - b17 + b38 =L= 0;
e25.. - b17 + b39 =L= 0;
e26.. - b17 + b40 =L= 0;
e27.. - b18 + b41 =L= 0;
e28.. - b18 + b42 =L= 0;
e29.. - b18 + b43 =L= 0;
e30.. - b18 + b44 =L= 0;
e31.. - b18 + b45 =L= 0;
e32.. - b18 + b46 =L= 0;
e33.. - b18 + b47 =L= 0;
e34.. - b18 + b48 =L= 0;
e35.. - b18 + b49 =L= 0;
e36.. - b18 + b50 =L= 0;
e37.. - b19 + b51 =L= 0;
e38.. - b19 + b52 =L= 0;
e39.. - b19 + b53 =L= 0;
e40.. - b19 + b54 =L= 0;
e41.. - b19 + b55 =L= 0;
e42.. - b19 + b56 =L= 0;
e43.. - b19 + b57 =L= 0;
e44.. - b19 + b58 =L= 0;
e45.. - b19 + b59 =L= 0;
e46.. - b19 + b60 =L= 0;
e47.. - b20 + b61 =L= 0;
e48.. - b20 + b62 =L= 0;
e49.. - b20 + b63 =L= 0;
e50.. - b20 + b64 =L= 0;
e51.. - b20 + b65 =L= 0;
e52.. - b20 + b66 =L= 0;
e53.. - b20 + b67 =L= 0;
e54.. - b20 + b68 =L= 0;
e55.. - b20 + b69 =L= 0;
e56.. - b20 + b70 =L= 0;
e57.. b21 + b31 + b41 + b51 + b61 =E= 1;
e58.. b22 + b32 + b42 + b52 + b62 =E= 1;
e59.. b23 + b33 + b43 + b53 + b63 =E= 1;
e60.. b24 + b34 + b44 + b54 + b64 =E= 1;
e61.. b25 + b35 + b45 + b55 + b65 =E= 1;
e62.. b26 + b36 + b46 + b56 + b66 =E= 1;
e63.. b27 + b37 + b47 + b57 + b67 =E= 1;
e64.. b28 + b38 + b48 + b58 + b68 =E= 1;
e65.. b29 + b39 + b49 + b59 + b69 =E= 1;
e66.. b30 + b40 + b50 + b60 + b70 =E= 1;
e67.. - 3*b21 - 2*b31 - 3*b41 - b51 - 2*b61 + x76 - x112 - x122 - x132 - x142
- x152 =G= 0;
e68.. - b22 - 2*b32 - b42 - 3*b52 - 2*b62 + x77 - x113 - x123 - x133 - x143
- x153 =G= 0;
e69.. - b23 - 2*b33 - 2*b43 - b53 - b63 + x78 - x114 - x124 - x134 - x144
- x154 =G= 0;
e70.. - 2*b24 - b34 - 3*b44 - b54 - b64 + x79 - x115 - x125 - x135 - x145
- x155 =G= 0;
e71.. - b25 - b35 - 2*b45 - 2*b55 - b65 + x80 - x116 - x126 - x136 - x146
- x156 =G= 0;
e72.. - 3*b26 - b36 - b46 - 3*b56 - 3*b66 + x81 - x117 - x127 - x137 - x147
- x157 =G= 0;
e73.. - b27 - 2*b37 - b47 - b57 - 2*b67 + x82 - x118 - x128 - x138 - x148
- x158 =G= 0;
e74.. - b28 - b38 - b48 - b58 - 3*b68 + x83 - x119 - x129 - x139 - x149 - x159
=G= 0;
e75.. - 2*b29 - 2*b39 - 2*b49 - 2*b59 - b69 + x84 - x120 - x130 - x140 - x150
- x160 =G= 0;
e76.. - 3*b30 - 2*b40 - 2*b50 - 2*b60 - b70 + x85 - x121 - x131 - x141 - x151
- x161 =G= 0;
e77.. - 133.258309275*b21 - 144.933884175*b22 - 90.093117225*b23
- 97.285204275*b24 - 89.79206385*b25 - 93.475928775*b26
- 123.485735475*b27 - 130.122945825*b28 - 81.4077558*b29
- 86.2760787*b30 + x87 + x92 + x97 + x102 =E= 0;
e78.. - 133.258309275*b31 - 144.933884175*b32 - 90.093117225*b33
- 97.285204275*b34 - 89.79206385*b35 - 93.475928775*b36
- 123.485735475*b37 - 130.122945825*b38 - 81.4077558*b39
- 86.2760787*b40 + x88 + x93 + x98 + x103 =E= 0;
e79.. - 133.258309275*b41 - 144.933884175*b42 - 90.093117225*b43
- 97.285204275*b44 - 89.79206385*b45 - 93.475928775*b46
- 123.485735475*b47 - 130.122945825*b48 - 81.4077558*b49
- 86.2760787*b50 + x89 + x94 + x99 + x104 =E= 0;
e80.. - 133.258309275*b51 - 144.933884175*b52 - 90.093117225*b53
- 97.285204275*b54 - 89.79206385*b55 - 93.475928775*b56
- 123.485735475*b57 - 130.122945825*b58 - 81.4077558*b59
- 86.2760787*b60 + x90 + x95 + x100 + x105 =E= 0;
e81.. - 133.258309275*b61 - 144.933884175*b62 - 90.093117225*b63
- 97.285204275*b64 - 89.79206385*b65 - 93.475928775*b66
- 123.485735475*b67 - 130.122945825*b68 - 81.4077558*b69
- 86.2760787*b70 + x91 + x96 + x101 + x106 =E= 0;
e82.. - 1070.131023375*b1 + x87 =L= 0;
e83.. - 1070.131023375*b2 + x88 =L= 0;
e84.. - 1070.131023375*b3 + x89 =L= 0;
e85.. - 1070.131023375*b4 + x90 =L= 0;
e86.. - 1070.131023375*b5 + x91 =L= 0;
e87.. - 1070.131023375*b6 + x92 =L= 0;
e88.. - 1070.131023375*b7 + x93 =L= 0;
e89.. - 1070.131023375*b8 + x94 =L= 0;
e90.. - 1070.131023375*b9 + x95 =L= 0;
e91.. - 1070.131023375*b10 + x96 =L= 0;
e92.. - 1070.131023375*b11 + x97 =L= 0;
e93.. - 1070.131023375*b12 + x98 =L= 0;
e94.. - 1070.131023375*b13 + x99 =L= 0;
e95.. - 1070.131023375*b14 + x100 =L= 0;
e96.. - 1070.131023375*b15 + x101 =L= 0;
e97.. 1070.131023375*b16 + x102 =L= 1070.131023375;
e98.. 1070.131023375*b17 + x103 =L= 1070.131023375;
e99.. 1070.131023375*b18 + x104 =L= 1070.131023375;
e100.. 1070.131023375*b19 + x105 =L= 1070.131023375;
e101.. 1070.131023375*b20 + x106 =L= 1070.131023375;
e102.. - x71 + x112 + x162 =E= 0;
e103.. - x71 + x113 + x163 =E= 0;
e104.. - x71 + x114 + x164 =E= 0;
e105.. - x71 + x115 + x165 =E= 0;
e106.. - x71 + x116 + x166 =E= 0;
e107.. - x71 + x117 + x167 =E= 0;
e108.. - x71 + x118 + x168 =E= 0;
e109.. - x71 + x119 + x169 =E= 0;
e110.. - x71 + x120 + x170 =E= 0;
e111.. - x71 + x121 + x171 =E= 0;
e112.. - x72 + x122 + x172 =E= 0;
e113.. - x72 + x123 + x173 =E= 0;
e114.. - x72 + x124 + x174 =E= 0;
e115.. - x72 + x125 + x175 =E= 0;
e116.. - x72 + x126 + x176 =E= 0;
e117.. - x72 + x127 + x177 =E= 0;
e118.. - x72 + x128 + x178 =E= 0;
e119.. - x72 + x129 + x179 =E= 0;
e120.. - x72 + x130 + x180 =E= 0;
e121.. - x72 + x131 + x181 =E= 0;
e122.. - x73 + x132 + x182 =E= 0;
e123.. - x73 + x133 + x183 =E= 0;
e124.. - x73 + x134 + x184 =E= 0;
e125.. - x73 + x135 + x185 =E= 0;
e126.. - x73 + x136 + x186 =E= 0;
e127.. - x73 + x137 + x187 =E= 0;
e128.. - x73 + x138 + x188 =E= 0;
e129.. - x73 + x139 + x189 =E= 0;
e130.. - x73 + x140 + x190 =E= 0;
e131.. - x73 + x141 + x191 =E= 0;
e132.. - x74 + x142 + x192 =E= 0;
e133.. - x74 + x143 + x193 =E= 0;
e134.. - x74 + x144 + x194 =E= 0;
e135.. - x74 + x145 + x195 =E= 0;
e136.. - x74 + x146 + x196 =E= 0;
e137.. - x74 + x147 + x197 =E= 0;
e138.. - x74 + x148 + x198 =E= 0;
e139.. - x74 + x149 + x199 =E= 0;
e140.. - x74 + x150 + x200 =E= 0;
e141.. - x74 + x151 + x201 =E= 0;
e142.. - x75 + x152 + x202 =E= 0;
e143.. - x75 + x153 + x203 =E= 0;
e144.. - x75 + x154 + x204 =E= 0;
e145.. - x75 + x155 + x205 =E= 0;
e146.. - x75 + x156 + x206 =E= 0;
e147.. - x75 + x157 + x207 =E= 0;
e148.. - x75 + x158 + x208 =E= 0;
e149.. - x75 + x159 + x209 =E= 0;
e150.. - x75 + x160 + x210 =E= 0;
e151.. - x75 + x161 + x211 =E= 0;
e152.. - 11*b21 + x112 =L= 0;
e153.. - 11*b22 + x113 =L= 0;
e154.. - 11*b23 + x114 =L= 0;
e155.. - 11*b24 + x115 =L= 0;
e156.. - 11*b25 + x116 =L= 0;
e157.. - 11*b26 + x117 =L= 0;
e158.. - 11*b27 + x118 =L= 0;
e159.. - 11*b28 + x119 =L= 0;
e160.. - 11*b29 + x120 =L= 0;
e161.. - 11*b30 + x121 =L= 0;
e162.. - 10*b31 + x122 =L= 0;
e163.. - 10*b32 + x123 =L= 0;
e164.. - 10*b33 + x124 =L= 0;
e165.. - 10*b34 + x125 =L= 0;
e166.. - 10*b35 + x126 =L= 0;
e167.. - 10*b36 + x127 =L= 0;
e168.. - 10*b37 + x128 =L= 0;
e169.. - 10*b38 + x129 =L= 0;
e170.. - 10*b39 + x130 =L= 0;
e171.. - 10*b40 + x131 =L= 0;
e172.. - 11*b41 + x132 =L= 0;
e173.. - 11*b42 + x133 =L= 0;
e174.. - 11*b43 + x134 =L= 0;
e175.. - 11*b44 + x135 =L= 0;
e176.. - 11*b45 + x136 =L= 0;
e177.. - 11*b46 + x137 =L= 0;
e178.. - 11*b47 + x138 =L= 0;
e179.. - 11*b48 + x139 =L= 0;
e180.. - 11*b49 + x140 =L= 0;
e181.. - 11*b50 + x141 =L= 0;
e182.. - 7*b51 + x142 =L= 0;
e183.. - 7*b52 + x143 =L= 0;
e184.. - 7*b53 + x144 =L= 0;
e185.. - 7*b54 + x145 =L= 0;
e186.. - 7*b55 + x146 =L= 0;
e187.. - 7*b56 + x147 =L= 0;
e188.. - 7*b57 + x148 =L= 0;
e189.. - 7*b58 + x149 =L= 0;
e190.. - 7*b59 + x150 =L= 0;
e191.. - 7*b60 + x151 =L= 0;
e192.. - 10*b61 + x152 =L= 0;
e193.. - 10*b62 + x153 =L= 0;
e194.. - 10*b63 + x154 =L= 0;
e195.. - 10*b64 + x155 =L= 0;
e196.. - 10*b65 + x156 =L= 0;
e197.. - 10*b66 + x157 =L= 0;
e198.. - 10*b67 + x158 =L= 0;
e199.. - 10*b68 + x159 =L= 0;
e200.. - 10*b69 + x160 =L= 0;
e201.. - 10*b70 + x161 =L= 0;
e202.. 11*b21 + x162 =L= 11;
e203.. 11*b22 + x163 =L= 11;
e204.. 11*b23 + x164 =L= 11;
e205.. 11*b24 + x165 =L= 11;
e206.. 11*b25 + x166 =L= 11;
e207.. 11*b26 + x167 =L= 11;
e208.. 11*b27 + x168 =L= 11;
e209.. 11*b28 + x169 =L= 11;
e210.. 11*b29 + x170 =L= 11;
e211.. 11*b30 + x171 =L= 11;
e212.. 10*b31 + x172 =L= 10;
e213.. 10*b32 + x173 =L= 10;
e214.. 10*b33 + x174 =L= 10;
e215.. 10*b34 + x175 =L= 10;
e216.. 10*b35 + x176 =L= 10;
e217.. 10*b36 + x177 =L= 10;
e218.. 10*b37 + x178 =L= 10;
e219.. 10*b38 + x179 =L= 10;
e220.. 10*b39 + x180 =L= 10;
e221.. 10*b40 + x181 =L= 10;
e222.. 11*b41 + x182 =L= 11;
e223.. 11*b42 + x183 =L= 11;
e224.. 11*b43 + x184 =L= 11;
e225.. 11*b44 + x185 =L= 11;
e226.. 11*b45 + x186 =L= 11;
e227.. 11*b46 + x187 =L= 11;
e228.. 11*b47 + x188 =L= 11;
e229.. 11*b48 + x189 =L= 11;
e230.. 11*b49 + x190 =L= 11;
e231.. 11*b50 + x191 =L= 11;
e232.. 7*b51 + x192 =L= 7;
e233.. 7*b52 + x193 =L= 7;
e234.. 7*b53 + x194 =L= 7;
e235.. 7*b54 + x195 =L= 7;
e236.. 7*b55 + x196 =L= 7;
e237.. 7*b56 + x197 =L= 7;
e238.. 7*b57 + x198 =L= 7;
e239.. 7*b58 + x199 =L= 7;
e240.. 7*b59 + x200 =L= 7;
e241.. 7*b60 + x201 =L= 7;
e242.. 10*b61 + x202 =L= 10;
e243.. 10*b62 + x203 =L= 10;
e244.. 10*b63 + x204 =L= 10;
e245.. 10*b64 + x205 =L= 10;
e246.. 10*b65 + x206 =L= 10;
e247.. 10*b66 + x207 =L= 10;
e248.. 10*b67 + x208 =L= 10;
e249.. 10*b68 + x209 =L= 10;
e250.. 10*b69 + x210 =L= 10;
e251.. 10*b70 + x211 =L= 10;
e252.. - 471.299114292143*b21 - 87.3644508144726*b22 - 1199.55883169351*b23
- 1455.32236178753*b24 - 59.9123555503718*b25 - 379.038814816129*b26
- 1209.04864109044*b27 - 1788.49473840444*b28 - 938.567397231442*b29
- 2381.30274221782*b30 + x212 + x217 + x222 + x227 =E= 0;
e253.. - 471.299114292143*b31 - 87.3644508144726*b32 - 1199.55883169351*b33
- 1455.32236178753*b34 - 59.9123555503718*b35 - 379.038814816129*b36
- 1209.04864109044*b37 - 1788.49473840444*b38 - 938.567397231442*b39
- 2381.30274221782*b40 + x213 + x218 + x223 + x228 =E= 0;
e254.. - 471.299114292143*b41 - 87.3644508144726*b42 - 1199.55883169351*b43
- 1455.32236178753*b44 - 59.9123555503718*b45 - 379.038814816129*b46
- 1209.04864109044*b47 - 1788.49473840444*b48 - 938.567397231442*b49
- 2381.30274221782*b50 + x214 + x219 + x224 + x229 =E= 0;
e255.. - 471.299114292143*b51 - 87.3644508144726*b52 - 1199.55883169351*b53
- 1455.32236178753*b54 - 59.9123555503718*b55 - 379.038814816129*b56
- 1209.04864109044*b57 - 1788.49473840444*b58 - 938.567397231442*b59
- 2381.30274221782*b60 + x215 + x220 + x225 + x230 =E= 0;
e256.. - 471.299114292143*b61 - 87.3644508144726*b62 - 1199.55883169351*b63
- 1455.32236178753*b64 - 59.9123555503718*b65 - 379.038814816129*b66
- 1209.04864109044*b67 - 1788.49473840444*b68 - 938.567397231442*b69
- 2381.30274221782*b70 + x216 + x221 + x226 + x231 =E= 0;
e257.. - 9969.9094478983*b1 + x212 =L= 0;
e258.. - 9969.9094478983*b2 + x213 =L= 0;
e259.. - 9969.9094478983*b3 + x214 =L= 0;
e260.. - 9969.9094478983*b4 + x215 =L= 0;
e261.. - 9969.9094478983*b5 + x216 =L= 0;
e262.. - 9969.9094478983*b6 + x217 =L= 0;
e263.. - 9969.9094478983*b7 + x218 =L= 0;
e264.. - 9969.9094478983*b8 + x219 =L= 0;
e265.. - 9969.9094478983*b9 + x220 =L= 0;
e266.. - 9969.9094478983*b10 + x221 =L= 0;
e267.. - 9969.9094478983*b11 + x222 =L= 0;
e268.. - 9969.9094478983*b12 + x223 =L= 0;
e269.. - 9969.9094478983*b13 + x224 =L= 0;
e270.. - 9969.9094478983*b14 + x225 =L= 0;
e271.. - 9969.9094478983*b15 + x226 =L= 0;
e272.. 9969.9094478983*b16 + x227 =L= 9969.9094478983;
e273.. 9969.9094478983*b17 + x228 =L= 9969.9094478983;
e274.. 9969.9094478983*b18 + x229 =L= 9969.9094478983;
e275.. 9969.9094478983*b19 + x230 =L= 9969.9094478983;
e276.. 9969.9094478983*b20 + x231 =L= 9969.9094478983;
e277.. x107 + 471.299114292143*x112 + 87.3644508144726*x113
+ 1199.55883169351*x114 + 1455.32236178753*x115 + 59.9123555503718*x116
+ 379.038814816129*x117 + 1209.04864109044*x118 + 1788.49473840444*x119
+ 938.567397231442*x120 + 2381.30274221782*x121 - 11*x212 - 8*x217
- 7*x222 =E= 0;
e278.. x108 + 471.299114292143*x122 + 87.3644508144726*x123
+ 1199.55883169351*x124 + 1455.32236178753*x125 + 59.9123555503718*x126
+ 379.038814816129*x127 + 1209.04864109044*x128 + 1788.49473840444*x129
+ 938.567397231442*x130 + 2381.30274221782*x131 - 6*x213 - 7*x218
- 10*x223 =E= 0;
e279.. x109 + 471.299114292143*x132 + 87.3644508144726*x133
+ 1199.55883169351*x134 + 1455.32236178753*x135 + 59.9123555503718*x136
+ 379.038814816129*x137 + 1209.04864109044*x138 + 1788.49473840444*x139
+ 938.567397231442*x140 + 2381.30274221782*x141 - 10*x214 - 6*x219
- 11*x224 =E= 0;
e280.. x110 + 471.299114292143*x142 + 87.3644508144726*x143
+ 1199.55883169351*x144 + 1455.32236178753*x145 + 59.9123555503718*x146
+ 379.038814816129*x147 + 1209.04864109044*x148 + 1788.49473840444*x149
+ 938.567397231442*x150 + 2381.30274221782*x151 - 7*x215 - 6*x220
- 7*x225 =E= 0;
e281.. x111 + 471.299114292143*x152 + 87.3644508144726*x153
+ 1199.55883169351*x154 + 1455.32236178753*x155 + 59.9123555503718*x156
+ 379.038814816129*x157 + 1209.04864109044*x158 + 1788.49473840444*x159
+ 938.567397231442*x160 + 2381.30274221782*x161 - 7*x216 - 4*x221
- 10*x226 =E= 0;
* set non-default bounds
x71.up = 11;
x72.up = 10;
x73.up = 11;
x74.up = 7;
x75.up = 10;
x76.lo = 1; x76.up = 14;
x77.lo = 1; x77.up = 12;
x78.lo = 1; x78.up = 13;
x79.lo = 1; x79.up = 14;
x80.lo = 1; x80.up = 13;
x81.lo = 1; x81.up = 14;
x82.lo = 1; x82.up = 12;
x83.lo = 1; x83.up = 13;
x84.lo = 1; x84.up = 13;
x85.lo = 1; x85.up = 14;
x107.up = 109669.003926881;
x108.up = 99699.094478983;
x109.up = 109669.003926881;
x110.up = 69789.3661352881;
x111.up = 99699.094478983;
x112.up = 11;
x113.up = 11;
x114.up = 11;
x115.up = 11;
x116.up = 11;
x117.up = 11;
x118.up = 11;
x119.up = 11;
x120.up = 11;
x121.up = 11;
x122.up = 10;
x123.up = 10;
x124.up = 10;
x125.up = 10;
x126.up = 10;
x127.up = 10;
x128.up = 10;
x129.up = 10;
x130.up = 10;
x131.up = 10;
x132.up = 11;
x133.up = 11;
x134.up = 11;
x135.up = 11;
x136.up = 11;
x137.up = 11;
x138.up = 11;
x139.up = 11;
x140.up = 11;
x141.up = 11;
x142.up = 7;
x143.up = 7;
x144.up = 7;
x145.up = 7;
x146.up = 7;
x147.up = 7;
x148.up = 7;
x149.up = 7;
x150.up = 7;
x151.up = 7;
x152.up = 10;
x153.up = 10;
x154.up = 10;
x155.up = 10;
x156.up = 10;
x157.up = 10;
x158.up = 10;
x159.up = 10;
x160.up = 10;
x161.up = 10;
x162.up = 11;
x163.up = 11;
x164.up = 11;
x165.up = 11;
x166.up = 11;
x167.up = 11;
x168.up = 11;
x169.up = 11;
x170.up = 11;
x171.up = 11;
x172.up = 10;
x173.up = 10;
x174.up = 10;
x175.up = 10;
x176.up = 10;
x177.up = 10;
x178.up = 10;
x179.up = 10;
x180.up = 10;
x181.up = 10;
x182.up = 11;
x183.up = 11;
x184.up = 11;
x185.up = 11;
x186.up = 11;
x187.up = 11;
x188.up = 11;
x189.up = 11;
x190.up = 11;
x191.up = 11;
x192.up = 7;
x193.up = 7;
x194.up = 7;
x195.up = 7;
x196.up = 7;
x197.up = 7;
x198.up = 7;
x199.up = 7;
x200.up = 7;
x201.up = 7;
x202.up = 10;
x203.up = 10;
x204.up = 10;
x205.up = 10;
x206.up = 10;
x207.up = 10;
x208.up = 10;
x209.up = 10;
x210.up = 10;
x211.up = 10;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

