MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance syn05m
Selection of optimal configuration and parameters for a processing system selected from a superstructure containing alternative processing units and interconnections.
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 837.73240090 (ALPHAECP) 837.73240090 (ANTIGONE) 837.73240090 (BARON) 837.73240090 (BONMIN) 837.73240090 (COUENNE) 837.73240090 (LINDO) 837.73240090 (SCIP) 837.73240090 (SHOT) |
| Referencesⓘ | Duran, Marco A and Grossmann, I E, An Outer-Approximation Algorithm for a Class of Mixed-integer Nonlinear Programs, Mathematical Programming, 36:3, 1986, 307-339. Türkay, Metin and Grossmann, I E, Logic-based MINLP Algorithms for optimal synthesis of process networks, Computers and Chemical Engineering, 20:8, 1996, 959-978. |
| Sourceⓘ | Syn05M.gms from CMU-IBM MINLP solver project page |
| Applicationⓘ | Synthesis of processing system |
| Added to libraryⓘ | 28 Sep 2013 |
| Problem typeⓘ | MBNLP |
| #Variablesⓘ | 20 |
| #Binary Variablesⓘ | 5 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 3 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | max |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 10 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 28 |
| #Linear Constraintsⓘ | 25 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 3 |
| Operands in Gen. Nonlin. Functionsⓘ | log |
| Constraints curvatureⓘ | convex |
| #Nonzeros in Jacobianⓘ | 73 |
| #Nonlinear Nonzeros in Jacobianⓘ | 3 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 3 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 3 |
| #Blocks in Hessian of Lagrangianⓘ | 3 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 5.0000e-01 |
| Maximal coefficientⓘ | 3.0000e+02 |
| Infeasibility of initial pointⓘ | 1 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 29 6 6 17 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 21 16 5 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 84 81 3 0
*
* Solve m using MINLP maximizing objvar;
Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,b17,b18
,b19,b20,b21;
Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16;
Binary Variables b17,b18,b19,b20,b21;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29;
e1.. objvar - 5*x8 + 2*x13 - 200*x14 - 250*x15 - 300*x16 + 5*b17 + 8*b18
+ 6*b19 + 10*b20 + 6*b21 =E= 0;
e2.. x2 - x3 - x4 =E= 0;
e3.. - x5 - x6 + x7 =E= 0;
e4.. x7 - x8 - x9 =E= 0;
e5.. x9 - x10 - x11 - x12 =E= 0;
e6.. -log(1 + x3) + x5 + b17 =L= 1;
e7.. x3 - 10*b17 =L= 0;
e8.. x5 - 2.39789527279837*b17 =L= 0;
e9.. -1.2*log(1 + x4) + x6 + b18 =L= 1;
e10.. x4 - 10*b18 =L= 0;
e11.. x6 - 2.87747432735804*b18 =L= 0;
e12.. - 0.75*x10 + x14 + b19 =L= 1;
e13.. - 0.75*x10 + x14 - b19 =G= -1;
e14.. x10 - 2.87747432735804*b19 =L= 0;
e15.. x14 - 2.15810574551853*b19 =L= 0;
e16.. -1.5*log(1 + x11) + x15 + b20 =L= 1;
e17.. x11 - 2.87747432735804*b20 =L= 0;
e18.. x15 - 2.03277599268042*b20 =L= 0;
e19.. - x12 + x16 + b21 =L= 1;
e20.. - x12 + x16 - b21 =G= -1;
e21.. - 0.5*x13 + x16 + b21 =L= 1;
e22.. - 0.5*x13 + x16 - b21 =G= -1;
e23.. x12 - 2.87747432735804*b21 =L= 0;
e24.. x13 - 7*b21 =L= 0;
e25.. x16 - 3.5*b21 =L= 0;
e26.. b17 + b18 =E= 1;
e27.. b17 + b18 - b19 =G= 0;
e28.. b17 + b18 - b20 =G= 0;
e29.. b17 + b18 - b21 =G= 0;
* set non-default bounds
x2.up = 10;
x13.up = 7;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% maximizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

