MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance syn05m02m
Selection of optimal configuration and parameters for a processing system selected from a superstructure containing alternative processing units and interconnections.
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 3032.87700000 (ALPHAECP) 3032.73579200 (ANTIGONE) 3032.73542300 (BARON) 3032.73540000 (BONMIN) 3032.73538600 (COUENNE) 3032.73538600 (LINDO) 3032.73546900 (SCIP) 3032.73590200 (SHOT) |
Referencesⓘ | Duran, Marco A and Grossmann, I E, An Outer-Approximation Algorithm for a Class of Mixed-integer Nonlinear Programs, Mathematical Programming, 36:3, 1986, 307-339. Türkay, Metin and Grossmann, I E, Logic-based MINLP Algorithms for optimal synthesis of process networks, Computers and Chemical Engineering, 20:8, 1996, 959-978. |
Sourceⓘ | Syn05M02M.gms from CMU-IBM MINLP solver project page |
Applicationⓘ | Synthesis of processing system |
Added to libraryⓘ | 28 Sep 2013 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 60 |
#Binary Variablesⓘ | 20 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 6 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | max |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 22 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 101 |
#Linear Constraintsⓘ | 95 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 6 |
Operands in Gen. Nonlin. Functionsⓘ | log |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 241 |
#Nonlinear Nonzeros in Jacobianⓘ | 6 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 6 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 6 |
#Blocks in Hessian of Lagrangianⓘ | 6 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 5.0000e-01 |
Maximal coefficientⓘ | 4.0500e+02 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 102 11 22 69 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 61 41 20 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 264 258 6 0 * * Solve m using MINLP maximizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,b32,b33,b34,b35 ,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,x52 ,x53,x54,x55,x56,x57,x58,x59,x60,x61; Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31; Binary Variables b32,b33,b34,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46 ,b47,b48,b49,b50,b51; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102; e1.. objvar + x2 + x3 - 5*x14 - 10*x15 + 2*x24 + x25 - 80*x26 - 90*x27 - 285*x28 - 390*x29 - 290*x30 - 405*x31 + 5*b42 + 4*b43 + 8*b44 + 7*b45 + 6*b46 + 9*b47 + 10*b48 + 9*b49 + 6*b50 + 10*b51 =E= 0; e2.. x2 - x4 - x6 =E= 0; e3.. x3 - x5 - x7 =E= 0; e4.. - x8 - x10 + x12 =E= 0; e5.. - x9 - x11 + x13 =E= 0; e6.. x12 - x14 - x16 =E= 0; e7.. x13 - x15 - x17 =E= 0; e8.. x16 - x18 - x20 - x22 =E= 0; e9.. x17 - x19 - x21 - x23 =E= 0; e10.. -log(1 + x4) + x8 + b32 =L= 1; e11.. -log(1 + x5) + x9 + b33 =L= 1; e12.. x4 - 40*b32 =L= 0; e13.. x5 - 40*b33 =L= 0; e14.. x8 - 3.71357206670431*b32 =L= 0; e15.. x9 - 3.71357206670431*b33 =L= 0; e16.. -1.2*log(1 + x6) + x10 + b34 =L= 1; e17.. -1.2*log(1 + x7) + x11 + b35 =L= 1; e18.. x6 - 40*b34 =L= 0; e19.. x7 - 40*b35 =L= 0; e20.. x10 - 4.45628648004517*b34 =L= 0; e21.. x11 - 4.45628648004517*b35 =L= 0; e22.. - 0.75*x18 + x26 + b36 =L= 1; e23.. - 0.75*x19 + x27 + b37 =L= 1; e24.. - 0.75*x18 + x26 - b36 =G= -1; e25.. - 0.75*x19 + x27 - b37 =G= -1; e26.. x18 - 4.45628648004517*b36 =L= 0; e27.. x19 - 4.45628648004517*b37 =L= 0; e28.. x26 - 3.34221486003388*b36 =L= 0; e29.. x27 - 3.34221486003388*b37 =L= 0; e30.. -1.5*log(1 + x20) + x28 + b38 =L= 1; e31.. -1.5*log(1 + x21) + x29 + b39 =L= 1; e32.. x20 - 4.45628648004517*b38 =L= 0; e33.. x21 - 4.45628648004517*b39 =L= 0; e34.. x28 - 2.54515263975353*b38 =L= 0; e35.. x29 - 2.54515263975353*b39 =L= 0; e36.. - x22 + x30 + b40 =L= 1; e37.. - x23 + x31 + b41 =L= 1; e38.. - x22 + x30 - b40 =G= -1; e39.. - x23 + x31 - b41 =G= -1; e40.. - 0.5*x24 + x30 + b40 =L= 1; e41.. - 0.5*x25 + x31 + b41 =L= 1; e42.. - 0.5*x24 + x30 - b40 =G= -1; e43.. - 0.5*x25 + x31 - b41 =G= -1; e44.. x22 - 4.45628648004517*b40 =L= 0; e45.. x23 - 4.45628648004517*b41 =L= 0; e46.. x24 - 30*b40 =L= 0; e47.. x25 - 30*b41 =L= 0; e48.. x30 - 15*b40 =L= 0; e49.. x31 - 15*b41 =L= 0; e50.. 5*b42 + x52 =L= 0; e51.. 4*b43 + x53 =L= 0; e52.. 8*b44 + x54 =L= 0; e53.. 7*b45 + x55 =L= 0; e54.. 6*b46 + x56 =L= 0; e55.. 9*b47 + x57 =L= 0; e56.. 10*b48 + x58 =L= 0; e57.. 9*b49 + x59 =L= 0; e58.. 6*b50 + x60 =L= 0; e59.. 10*b51 + x61 =L= 0; e60.. 5*b42 + x52 =G= 0; e61.. 4*b43 + x53 =G= 0; e62.. 8*b44 + x54 =G= 0; e63.. 7*b45 + x55 =G= 0; e64.. 6*b46 + x56 =G= 0; e65.. 9*b47 + x57 =G= 0; e66.. 10*b48 + x58 =G= 0; e67.. 9*b49 + x59 =G= 0; e68.. 6*b50 + x60 =G= 0; e69.. 10*b51 + x61 =G= 0; e70.. b32 - b33 =L= 0; e71.. b34 - b35 =L= 0; e72.. b36 - b37 =L= 0; e73.. b38 - b39 =L= 0; e74.. b40 - b41 =L= 0; e75.. b42 + b43 =L= 1; e76.. b42 + b43 =L= 1; e77.. b44 + b45 =L= 1; e78.. b44 + b45 =L= 1; e79.. b46 + b47 =L= 1; e80.. b46 + b47 =L= 1; e81.. b48 + b49 =L= 1; e82.. b48 + b49 =L= 1; e83.. b50 + b51 =L= 1; e84.. b50 + b51 =L= 1; e85.. b32 - b42 =L= 0; e86.. - b32 + b33 - b43 =L= 0; e87.. b34 - b44 =L= 0; e88.. - b34 + b35 - b45 =L= 0; e89.. b36 - b46 =L= 0; e90.. - b36 + b37 - b47 =L= 0; e91.. b38 - b48 =L= 0; e92.. - b38 + b39 - b49 =L= 0; e93.. b40 - b50 =L= 0; e94.. - b40 + b41 - b51 =L= 0; e95.. b32 + b34 =E= 1; e96.. b33 + b35 =E= 1; e97.. b32 + b34 - b36 =G= 0; e98.. b33 + b35 - b37 =G= 0; e99.. b32 + b34 - b38 =G= 0; e100.. b33 + b35 - b39 =G= 0; e101.. b32 + b34 - b40 =G= 0; e102.. b33 + b35 - b41 =G= 0; * set non-default bounds x2.up = 40; x3.up = 40; x24.up = 30; x25.up = 30; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% maximizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f