MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Removed Instance syn10h
Selection of optimal configuration and parameters for a processing system selected from a superstructure containing alternative processing units and interconnections.
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 1267.35355000 (ALPHAECP) 1267.35355100 (ANTIGONE) 1267.35355100 (BARON) 1267.35355000 (BONMIN) 1267.35355000 (COUENNE) 1267.35355000 (LINDO) 1267.35355000 (SCIP) 1267.35355100 (SHOT) |
Referencesⓘ | Duran, Marco A and Grossmann, I E, An Outer-Approximation Algorithm for a Class of Mixed-integer Nonlinear Programs, Mathematical Programming, 36:3, 1986, 307-339. Türkay, Metin and Grossmann, I E, Logic-based MINLP Algorithms for optimal synthesis of process networks, Computers and Chemical Engineering, 20:8, 1996, 959-978. |
Sourceⓘ | Syn10H.gms from CMU-IBM MINLP solver project page |
Applicationⓘ | Synthesis of processing system |
Added to libraryⓘ | 28 Sep 2013 |
Removed from libraryⓘ | 16 Feb 2022 |
Removed becauseⓘ | Superseded by syn10hfsg. |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 77 |
#Binary Variablesⓘ | 10 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 18 |
#Nonlinear Binary Variablesⓘ | 6 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | max |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 18 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 112 |
#Linear Constraintsⓘ | 106 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 6 |
Operands in Gen. Nonlin. Functionsⓘ | div log mul |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 242 |
#Nonlinear Nonzeros in Jacobianⓘ | 18 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 36 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 12 |
#Blocks in Hessian of Lagrangianⓘ | 6 |
Minimal blocksize in Hessian of Lagrangianⓘ | 3 |
Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
Average blocksize in Hessian of Lagrangianⓘ | 3.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-06 |
Maximal coefficientⓘ | 5.0000e+02 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 113 55 10 48 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 78 68 10 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 261 243 18 0 * * Solve m using MINLP maximizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35 ,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52 ,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,b69 ,b70,b71,b72,b73,b74,b75,b76,b77,b78; Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51 ,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68; Binary Variables b69,b70,b71,b72,b73,b74,b75,b76,b77,b78; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113; e1.. objvar - 5*x8 + 2*x13 - 200*x21 - 250*x22 - 200*x23 - 200*x24 - 500*x25 - 350*x26 + 5*b69 + 8*b70 + 6*b71 + 10*b72 + 6*b73 + 7*b74 + 4*b75 + 5*b76 + 2*b77 + 4*b78 =E= 0; e2.. x2 - x3 - x4 =E= 0; e3.. - x5 - x6 + x7 =E= 0; e4.. x7 - x8 - x9 =E= 0; e5.. x9 - x10 - x11 - x12 =E= 0; e6.. x14 - x17 - x18 =E= 0; e7.. x16 - x19 - x20 - x21 =E= 0; e8.. (x31/(1e-6 + b69) - log(1 + x27/(1e-6 + b69)))*(1e-6 + b69) =L= 0; e9.. x28 =E= 0; e10.. x32 =E= 0; e11.. x3 - x27 - x28 =E= 0; e12.. x5 - x31 - x32 =E= 0; e13.. x27 - 10*b69 =L= 0; e14.. x28 + 10*b69 =L= 10; e15.. x31 - 2.39789527279837*b69 =L= 0; e16.. x32 + 2.39789527279837*b69 =L= 2.39789527279837; e17.. (x33/(1e-6 + b70) - 1.2*log(1 + x29/(1e-6 + b70)))*(1e-6 + b70) =L= 0; e18.. x30 =E= 0; e19.. x34 =E= 0; e20.. x4 - x29 - x30 =E= 0; e21.. x6 - x33 - x34 =E= 0; e22.. x29 - 10*b70 =L= 0; e23.. x30 + 10*b70 =L= 10; e24.. x33 - 2.87747432735804*b70 =L= 0; e25.. x34 + 2.87747432735804*b70 =L= 2.87747432735804; e26.. - 0.75*x35 + x43 =E= 0; e27.. x36 =E= 0; e28.. x44 =E= 0; e29.. x10 - x35 - x36 =E= 0; e30.. x14 - x43 - x44 =E= 0; e31.. x35 - 2.87747432735804*b71 =L= 0; e32.. x36 + 2.87747432735804*b71 =L= 2.87747432735804; e33.. x43 - 2.15810574551853*b71 =L= 0; e34.. x44 + 2.15810574551853*b71 =L= 2.15810574551853; e35.. (x45/(1e-6 + b72) - 1.5*log(1 + x37/(1e-6 + b72)))*(1e-6 + b72) =L= 0; e36.. x38 =E= 0; e37.. x47 =E= 0; e38.. x11 - x37 - x38 =E= 0; e39.. x15 - x45 - x47 =E= 0; e40.. x37 - 2.87747432735804*b72 =L= 0; e41.. x38 + 2.87747432735804*b72 =L= 2.87747432735804; e42.. x45 - 2.03277599268042*b72 =L= 0; e43.. x47 + 2.03277599268042*b72 =L= 2.03277599268042; e44.. - x39 + x49 =E= 0; e45.. - 0.5*x41 + x49 =E= 0; e46.. x40 =E= 0; e47.. x42 =E= 0; e48.. x50 =E= 0; e49.. x12 - x39 - x40 =E= 0; e50.. x13 - x41 - x42 =E= 0; e51.. x16 - x49 - x50 =E= 0; e52.. x39 - 2.87747432735804*b73 =L= 0; e53.. x40 + 2.87747432735804*b73 =L= 2.87747432735804; e54.. x41 - 7*b73 =L= 0; e55.. x42 + 7*b73 =L= 7; e56.. x49 - 3.5*b73 =L= 0; e57.. x50 + 3.5*b73 =L= 3.5; e58.. (x59/(1e-6 + b74) - 1.25*log(1 + x51/(1e-6 + b74)))*(1e-6 + b74) =L= 0; e59.. x52 =E= 0; e60.. x60 =E= 0; e61.. x17 - x51 - x52 =E= 0; e62.. x22 - x59 - x60 =E= 0; e63.. x51 - 2.15810574551853*b74 =L= 0; e64.. x52 + 2.15810574551853*b74 =L= 2.15810574551853; e65.. x59 - 1.43746550029693*b74 =L= 0; e66.. x60 + 1.43746550029693*b74 =L= 1.43746550029693; e67.. (x61/(1e-6 + b75) - 0.9*log(1 + x53/(1e-6 + b75)))*(1e-6 + b75) =L= 0; e68.. x54 =E= 0; e69.. x62 =E= 0; e70.. x18 - x53 - x54 =E= 0; e71.. x23 - x61 - x62 =E= 0; e72.. x53 - 2.15810574551853*b75 =L= 0; e73.. x54 + 2.15810574551853*b75 =L= 2.15810574551853; e74.. x61 - 1.03497516021379*b75 =L= 0; e75.. x62 + 1.03497516021379*b75 =L= 1.03497516021379; e76.. (x63/(1e-6 + b76) - log(1 + x46/(1e-6 + b76)))*(1e-6 + b76) =L= 0; e77.. x48 =E= 0; e78.. x64 =E= 0; e79.. x15 - x46 - x48 =E= 0; e80.. x24 - x63 - x64 =E= 0; e81.. x46 - 2.03277599268042*b76 =L= 0; e82.. x48 + 2.03277599268042*b76 =L= 2.03277599268042; e83.. x63 - 1.10947836929589*b76 =L= 0; e84.. x64 + 1.10947836929589*b76 =L= 1.10947836929589; e85.. - 0.9*x55 + x65 =E= 0; e86.. x56 =E= 0; e87.. x66 =E= 0; e88.. x19 - x55 - x56 =E= 0; e89.. x25 - x65 - x66 =E= 0; e90.. x55 - 3.5*b77 =L= 0; e91.. x56 + 3.5*b77 =L= 3.5; e92.. x65 - 3.15*b77 =L= 0; e93.. x66 + 3.15*b77 =L= 3.15; e94.. - 0.6*x57 + x67 =E= 0; e95.. x58 =E= 0; e96.. x68 =E= 0; e97.. x20 - x57 - x58 =E= 0; e98.. x26 - x67 - x68 =E= 0; e99.. x57 - 3.5*b78 =L= 0; e100.. x58 + 3.5*b78 =L= 3.5; e101.. x67 - 2.1*b78 =L= 0; e102.. x68 + 2.1*b78 =L= 2.1; e103.. b69 + b70 =E= 1; e104.. - b71 + b74 + b75 =G= 0; e105.. - b72 + b76 =G= 0; e106.. b69 + b70 - b71 =G= 0; e107.. b69 + b70 - b72 =G= 0; e108.. b69 + b70 - b73 =G= 0; e109.. b71 - b74 =G= 0; e110.. b71 - b75 =G= 0; e111.. b72 - b76 =G= 0; e112.. b73 - b77 =G= 0; e113.. b73 - b78 =G= 0; * set non-default bounds x2.up = 10; x13.up = 7; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% maximizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f