MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance syn10m02hfsg
Selection of optimal configuration and parameters for a processing system selected from a superstructure containing alternative processing units and interconnections. Equivalent perspective reformulation of syn10m02.
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 2310.46438100 (ALPHAECP) 2310.96065300 (ANTIGONE) 2310.30071800 (BARON) 2310.30069100 (BONMIN) 2310.30234400 (COUENNE) 2310.30069100 (LINDO) 2310.30137400 (SCIP) 5309.56963600 (SHOT) |
| Referencesⓘ | Duran, Marco A and Grossmann, I E, An Outer-Approximation Algorithm for a Class of Mixed-integer Nonlinear Programs, Mathematical Programming, 36:3, 1986, 307-339. Türkay, Metin and Grossmann, I E, Logic-based MINLP Algorithms for optimal synthesis of process networks, Computers and Chemical Engineering, 20:8, 1996, 959-978. Kevin C. Furman, Nicolas W. Sawaya, Ignacio E. Grossmann, A computationally useful algebraic representation of nonlinear disjunctive convex sets using the perspective function, Tech. Rep., 2019. |
| Applicationⓘ | Synthesis of processing system |
| Added to libraryⓘ | 25 Sep 2019 |
| Problem typeⓘ | MBNLP |
| #Variablesⓘ | 194 |
| #Binary Variablesⓘ | 40 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 36 |
| #Nonlinear Binary Variablesⓘ | 12 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | max |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 38 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 294 |
| #Linear Constraintsⓘ | 282 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 12 |
| Operands in Gen. Nonlin. Functionsⓘ | div log mul |
| Constraints curvatureⓘ | convex |
| #Nonzeros in Jacobianⓘ | 634 |
| #Nonlinear Nonzeros in Jacobianⓘ | 36 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 72 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 24 |
| #Blocks in Hessian of Lagrangianⓘ | 12 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 3 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
| Average blocksize in Hessian of Lagrangianⓘ | 3.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e-03 |
| Maximal coefficientⓘ | 4.0500e+02 |
| Infeasibility of initial pointⓘ | 1 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 295 129 20 146 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 195 155 40 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 673 637 36 0
*
* Solve m using MINLP maximizing objvar;
Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18
,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35
,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52
,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69
,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86
,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102
,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115
,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128
,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141
,x142,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154
,x155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167
,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180
,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193
,b194,b195;
Positive Variables x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35
,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52
,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69
,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86
,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102
,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115
,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128
,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141
,x142,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154
,x155;
Binary Variables b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167
,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180
,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193
,b194,b195;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142
,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155
,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168
,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181
,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194
,e195,e196,e197,e198,e199,e200,e201,e202,e203,e204,e205,e206,e207
,e208,e209,e210,e211,e212,e213,e214,e215,e216,e217,e218,e219,e220
,e221,e222,e223,e224,e225,e226,e227,e228,e229,e230,e231,e232,e233
,e234,e235,e236,e237,e238,e239,e240,e241,e242,e243,e244,e245,e246
,e247,e248,e249,e250,e251,e252,e253,e254,e255,e256,e257,e258,e259
,e260,e261,e262,e263,e264,e265,e266,e267,e268,e269,e270,e271,e272
,e273,e274,e275,e276,e277,e278,e279,e280,e281,e282,e283,e284,e285
,e286,e287,e288,e289,e290,e291,e292,e293,e294,e295;
e1.. objvar + x22 + x23 - 5*x34 - 10*x35 + 2*x44 + x45 - 80*x60 - 90*x61
- 285*x62 - 390*x63 - 290*x64 - 405*x65 - 280*x66 - 400*x67 - 290*x68
- 300*x69 - 350*x70 - 250*x71 + 5*b176 + 4*b177 + 8*b178 + 7*b179
+ 6*b180 + 9*b181 + 10*b182 + 9*b183 + 6*b184 + 10*b185 + 7*b186 + 7*b187
+ 4*b188 + 3*b189 + 5*b190 + 6*b191 + 2*b192 + 5*b193 + 4*b194 + 7*b195
=E= 0;
e2.. x22 - x24 - x26 =E= 0;
e3.. x23 - x25 - x27 =E= 0;
e4.. - x28 - x30 + x32 =E= 0;
e5.. - x29 - x31 + x33 =E= 0;
e6.. x32 - x34 - x36 =E= 0;
e7.. x33 - x35 - x37 =E= 0;
e8.. x36 - x38 - x40 - x42 =E= 0;
e9.. x37 - x39 - x41 - x43 =E= 0;
e10.. x46 - x52 - x54 =E= 0;
e11.. x47 - x53 - x55 =E= 0;
e12.. x50 - x56 - x58 - x60 =E= 0;
e13.. x51 - x57 - x59 - x61 =E= 0;
e14.. (x80/(0.001 + 0.999*b156) - log(1 + x72/(0.001 + 0.999*b156)))*(0.001 +
0.999*b156) =L= 0;
e15.. (x81/(0.001 + 0.999*b157) - log(1 + x73/(0.001 + 0.999*b157)))*(0.001 +
0.999*b157) =L= 0;
e16.. x74 =E= 0;
e17.. x75 =E= 0;
e18.. x82 =E= 0;
e19.. x83 =E= 0;
e20.. x24 - x72 - x74 =E= 0;
e21.. x25 - x73 - x75 =E= 0;
e22.. x28 - x80 - x82 =E= 0;
e23.. x29 - x81 - x83 =E= 0;
e24.. x72 - 40*b156 =L= 0;
e25.. x73 - 40*b157 =L= 0;
e26.. x74 + 40*b156 =L= 40;
e27.. x75 + 40*b157 =L= 40;
e28.. x80 - 3.71357206670431*b156 =L= 0;
e29.. x81 - 3.71357206670431*b157 =L= 0;
e30.. x82 + 3.71357206670431*b156 =L= 3.71357206670431;
e31.. x83 + 3.71357206670431*b157 =L= 3.71357206670431;
e32.. (x84/(0.001 + 0.999*b158) - 1.2*log(1 + x76/(0.001 + 0.999*b158)))*(0.001
+ 0.999*b158) =L= 0;
e33.. (x85/(0.001 + 0.999*b159) - 1.2*log(1 + x77/(0.001 + 0.999*b159)))*(0.001
+ 0.999*b159) =L= 0;
e34.. x78 =E= 0;
e35.. x79 =E= 0;
e36.. x86 =E= 0;
e37.. x87 =E= 0;
e38.. x26 - x76 - x78 =E= 0;
e39.. x27 - x77 - x79 =E= 0;
e40.. x30 - x84 - x86 =E= 0;
e41.. x31 - x85 - x87 =E= 0;
e42.. x76 - 40*b158 =L= 0;
e43.. x77 - 40*b159 =L= 0;
e44.. x78 + 40*b158 =L= 40;
e45.. x79 + 40*b159 =L= 40;
e46.. x84 - 4.45628648004517*b158 =L= 0;
e47.. x85 - 4.45628648004517*b159 =L= 0;
e48.. x86 + 4.45628648004517*b158 =L= 4.45628648004517;
e49.. x87 + 4.45628648004517*b159 =L= 4.45628648004517;
e50.. - 0.75*x88 + x104 =E= 0;
e51.. - 0.75*x89 + x105 =E= 0;
e52.. x90 =E= 0;
e53.. x91 =E= 0;
e54.. x106 =E= 0;
e55.. x107 =E= 0;
e56.. x38 - x88 - x90 =E= 0;
e57.. x39 - x89 - x91 =E= 0;
e58.. x46 - x104 - x106 =E= 0;
e59.. x47 - x105 - x107 =E= 0;
e60.. x88 - 4.45628648004517*b160 =L= 0;
e61.. x89 - 4.45628648004517*b161 =L= 0;
e62.. x90 + 4.45628648004517*b160 =L= 4.45628648004517;
e63.. x91 + 4.45628648004517*b161 =L= 4.45628648004517;
e64.. x104 - 3.34221486003388*b160 =L= 0;
e65.. x105 - 3.34221486003388*b161 =L= 0;
e66.. x106 + 3.34221486003388*b160 =L= 3.34221486003388;
e67.. x107 + 3.34221486003388*b161 =L= 3.34221486003388;
e68.. (x108/(0.001 + 0.999*b162) - 1.5*log(1 + x92/(0.001 + 0.999*b162)))*(
0.001 + 0.999*b162) =L= 0;
e69.. (x109/(0.001 + 0.999*b163) - 1.5*log(1 + x93/(0.001 + 0.999*b163)))*(
0.001 + 0.999*b163) =L= 0;
e70.. x94 =E= 0;
e71.. x95 =E= 0;
e72.. x112 =E= 0;
e73.. x113 =E= 0;
e74.. x40 - x92 - x94 =E= 0;
e75.. x41 - x93 - x95 =E= 0;
e76.. x48 - x108 - x112 =E= 0;
e77.. x49 - x109 - x113 =E= 0;
e78.. x92 - 4.45628648004517*b162 =L= 0;
e79.. x93 - 4.45628648004517*b163 =L= 0;
e80.. x94 + 4.45628648004517*b162 =L= 4.45628648004517;
e81.. x95 + 4.45628648004517*b163 =L= 4.45628648004517;
e82.. x108 - 2.54515263975353*b162 =L= 0;
e83.. x109 - 2.54515263975353*b163 =L= 0;
e84.. x112 + 2.54515263975353*b162 =L= 2.54515263975353;
e85.. x113 + 2.54515263975353*b163 =L= 2.54515263975353;
e86.. - x96 + x116 =E= 0;
e87.. - x97 + x117 =E= 0;
e88.. - 0.5*x100 + x116 =E= 0;
e89.. - 0.5*x101 + x117 =E= 0;
e90.. x98 =E= 0;
e91.. x99 =E= 0;
e92.. x102 =E= 0;
e93.. x103 =E= 0;
e94.. x118 =E= 0;
e95.. x119 =E= 0;
e96.. x42 - x96 - x98 =E= 0;
e97.. x43 - x97 - x99 =E= 0;
e98.. x44 - x100 - x102 =E= 0;
e99.. x45 - x101 - x103 =E= 0;
e100.. x50 - x116 - x118 =E= 0;
e101.. x51 - x117 - x119 =E= 0;
e102.. x96 - 4.45628648004517*b164 =L= 0;
e103.. x97 - 4.45628648004517*b165 =L= 0;
e104.. x98 + 4.45628648004517*b164 =L= 4.45628648004517;
e105.. x99 + 4.45628648004517*b165 =L= 4.45628648004517;
e106.. x100 - 30*b164 =L= 0;
e107.. x101 - 30*b165 =L= 0;
e108.. x102 + 30*b164 =L= 30;
e109.. x103 + 30*b165 =L= 30;
e110.. x116 - 15*b164 =L= 0;
e111.. x117 - 15*b165 =L= 0;
e112.. x118 + 15*b164 =L= 15;
e113.. x119 + 15*b165 =L= 15;
e114.. (x136/(0.001 + 0.999*b166) - 1.25*log(1 + x120/(0.001 + 0.999*b166)))*(
0.001 + 0.999*b166) =L= 0;
e115.. (x137/(0.001 + 0.999*b167) - 1.25*log(1 + x121/(0.001 + 0.999*b167)))*(
0.001 + 0.999*b167) =L= 0;
e116.. x122 =E= 0;
e117.. x123 =E= 0;
e118.. x138 =E= 0;
e119.. x139 =E= 0;
e120.. x52 - x120 - x122 =E= 0;
e121.. x53 - x121 - x123 =E= 0;
e122.. x62 - x136 - x138 =E= 0;
e123.. x63 - x137 - x139 =E= 0;
e124.. x120 - 3.34221486003388*b166 =L= 0;
e125.. x121 - 3.34221486003388*b167 =L= 0;
e126.. x122 + 3.34221486003388*b166 =L= 3.34221486003388;
e127.. x123 + 3.34221486003388*b167 =L= 3.34221486003388;
e128.. x136 - 1.83548069293539*b166 =L= 0;
e129.. x137 - 1.83548069293539*b167 =L= 0;
e130.. x138 + 1.83548069293539*b166 =L= 1.83548069293539;
e131.. x139 + 1.83548069293539*b167 =L= 1.83548069293539;
e132.. (x140/(0.001 + 0.999*b168) - 0.9*log(1 + x124/(0.001 + 0.999*b168)))*(
0.001 + 0.999*b168) =L= 0;
e133.. (x141/(0.001 + 0.999*b169) - 0.9*log(1 + x125/(0.001 + 0.999*b169)))*(
0.001 + 0.999*b169) =L= 0;
e134.. x126 =E= 0;
e135.. x127 =E= 0;
e136.. x142 =E= 0;
e137.. x143 =E= 0;
e138.. x54 - x124 - x126 =E= 0;
e139.. x55 - x125 - x127 =E= 0;
e140.. x64 - x140 - x142 =E= 0;
e141.. x65 - x141 - x143 =E= 0;
e142.. x124 - 3.34221486003388*b168 =L= 0;
e143.. x125 - 3.34221486003388*b169 =L= 0;
e144.. x126 + 3.34221486003388*b168 =L= 3.34221486003388;
e145.. x127 + 3.34221486003388*b169 =L= 3.34221486003388;
e146.. x140 - 1.32154609891348*b168 =L= 0;
e147.. x141 - 1.32154609891348*b169 =L= 0;
e148.. x142 + 1.32154609891348*b168 =L= 1.32154609891348;
e149.. x143 + 1.32154609891348*b169 =L= 1.32154609891348;
e150.. (x144/(0.001 + 0.999*b170) - log(1 + x110/(0.001 + 0.999*b170)))*(0.001
+ 0.999*b170) =L= 0;
e151.. (x145/(0.001 + 0.999*b171) - log(1 + x111/(0.001 + 0.999*b171)))*(0.001
+ 0.999*b171) =L= 0;
e152.. x114 =E= 0;
e153.. x115 =E= 0;
e154.. x146 =E= 0;
e155.. x147 =E= 0;
e156.. x48 - x110 - x114 =E= 0;
e157.. x49 - x111 - x115 =E= 0;
e158.. x66 - x144 - x146 =E= 0;
e159.. x67 - x145 - x147 =E= 0;
e160.. x110 - 2.54515263975353*b170 =L= 0;
e161.. x111 - 2.54515263975353*b171 =L= 0;
e162.. x114 + 2.54515263975353*b170 =L= 2.54515263975353;
e163.. x115 + 2.54515263975353*b171 =L= 2.54515263975353;
e164.. x144 - 1.26558121681553*b170 =L= 0;
e165.. x145 - 1.26558121681553*b171 =L= 0;
e166.. x146 + 1.26558121681553*b170 =L= 1.26558121681553;
e167.. x147 + 1.26558121681553*b171 =L= 1.26558121681553;
e168.. - 0.9*x128 + x148 =E= 0;
e169.. - 0.9*x129 + x149 =E= 0;
e170.. x130 =E= 0;
e171.. x131 =E= 0;
e172.. x150 =E= 0;
e173.. x151 =E= 0;
e174.. x56 - x128 - x130 =E= 0;
e175.. x57 - x129 - x131 =E= 0;
e176.. x68 - x148 - x150 =E= 0;
e177.. x69 - x149 - x151 =E= 0;
e178.. x128 - 15*b172 =L= 0;
e179.. x129 - 15*b173 =L= 0;
e180.. x130 + 15*b172 =L= 15;
e181.. x131 + 15*b173 =L= 15;
e182.. x148 - 13.5*b172 =L= 0;
e183.. x149 - 13.5*b173 =L= 0;
e184.. x150 + 13.5*b172 =L= 13.5;
e185.. x151 + 13.5*b173 =L= 13.5;
e186.. - 0.6*x132 + x152 =E= 0;
e187.. - 0.6*x133 + x153 =E= 0;
e188.. x134 =E= 0;
e189.. x135 =E= 0;
e190.. x154 =E= 0;
e191.. x155 =E= 0;
e192.. x58 - x132 - x134 =E= 0;
e193.. x59 - x133 - x135 =E= 0;
e194.. x70 - x152 - x154 =E= 0;
e195.. x71 - x153 - x155 =E= 0;
e196.. x132 - 15*b174 =L= 0;
e197.. x133 - 15*b175 =L= 0;
e198.. x134 + 15*b174 =L= 15;
e199.. x135 + 15*b175 =L= 15;
e200.. x152 - 9*b174 =L= 0;
e201.. x153 - 9*b175 =L= 0;
e202.. x154 + 9*b174 =L= 9;
e203.. x155 + 9*b175 =L= 9;
e204.. x2 + 5*b176 =E= 0;
e205.. x3 + 4*b177 =E= 0;
e206.. x4 + 8*b178 =E= 0;
e207.. x5 + 7*b179 =E= 0;
e208.. x6 + 6*b180 =E= 0;
e209.. x7 + 9*b181 =E= 0;
e210.. x8 + 10*b182 =E= 0;
e211.. x9 + 9*b183 =E= 0;
e212.. x10 + 6*b184 =E= 0;
e213.. x11 + 10*b185 =E= 0;
e214.. x12 + 7*b186 =E= 0;
e215.. x13 + 7*b187 =E= 0;
e216.. x14 + 4*b188 =E= 0;
e217.. x15 + 3*b189 =E= 0;
e218.. x16 + 5*b190 =E= 0;
e219.. x17 + 6*b191 =E= 0;
e220.. x18 + 2*b192 =E= 0;
e221.. x19 + 5*b193 =E= 0;
e222.. x20 + 4*b194 =E= 0;
e223.. x21 + 7*b195 =E= 0;
e224.. b156 - b157 =L= 0;
e225.. b158 - b159 =L= 0;
e226.. b160 - b161 =L= 0;
e227.. b162 - b163 =L= 0;
e228.. b164 - b165 =L= 0;
e229.. b166 - b167 =L= 0;
e230.. b168 - b169 =L= 0;
e231.. b170 - b171 =L= 0;
e232.. b172 - b173 =L= 0;
e233.. b174 - b175 =L= 0;
e234.. b176 + b177 =L= 1;
e235.. b176 + b177 =L= 1;
e236.. b178 + b179 =L= 1;
e237.. b178 + b179 =L= 1;
e238.. b180 + b181 =L= 1;
e239.. b180 + b181 =L= 1;
e240.. b182 + b183 =L= 1;
e241.. b182 + b183 =L= 1;
e242.. b184 + b185 =L= 1;
e243.. b184 + b185 =L= 1;
e244.. b186 + b187 =L= 1;
e245.. b186 + b187 =L= 1;
e246.. b188 + b189 =L= 1;
e247.. b188 + b189 =L= 1;
e248.. b190 + b191 =L= 1;
e249.. b190 + b191 =L= 1;
e250.. b192 + b193 =L= 1;
e251.. b192 + b193 =L= 1;
e252.. b194 + b195 =L= 1;
e253.. b194 + b195 =L= 1;
e254.. b156 - b176 =L= 0;
e255.. - b156 + b157 - b177 =L= 0;
e256.. b158 - b178 =L= 0;
e257.. - b158 + b159 - b179 =L= 0;
e258.. b160 - b180 =L= 0;
e259.. - b160 + b161 - b181 =L= 0;
e260.. b162 - b182 =L= 0;
e261.. - b162 + b163 - b183 =L= 0;
e262.. b164 - b184 =L= 0;
e263.. - b164 + b165 - b185 =L= 0;
e264.. b166 - b186 =L= 0;
e265.. - b166 + b167 - b187 =L= 0;
e266.. b168 - b188 =L= 0;
e267.. - b168 + b169 - b189 =L= 0;
e268.. b170 - b190 =L= 0;
e269.. - b170 + b171 - b191 =L= 0;
e270.. b172 - b192 =L= 0;
e271.. - b172 + b173 - b193 =L= 0;
e272.. b174 - b194 =L= 0;
e273.. - b174 + b175 - b195 =L= 0;
e274.. b156 + b158 =E= 1;
e275.. b157 + b159 =E= 1;
e276.. - b160 + b166 + b168 =G= 0;
e277.. - b161 + b167 + b169 =G= 0;
e278.. - b162 + b170 =G= 0;
e279.. - b163 + b171 =G= 0;
e280.. b156 + b158 - b160 =G= 0;
e281.. b157 + b159 - b161 =G= 0;
e282.. b156 + b158 - b162 =G= 0;
e283.. b157 + b159 - b163 =G= 0;
e284.. b156 + b158 - b164 =G= 0;
e285.. b157 + b159 - b165 =G= 0;
e286.. b160 - b166 =G= 0;
e287.. b161 - b167 =G= 0;
e288.. b160 - b168 =G= 0;
e289.. b161 - b169 =G= 0;
e290.. b162 - b170 =G= 0;
e291.. b163 - b171 =G= 0;
e292.. b164 - b172 =G= 0;
e293.. b165 - b173 =G= 0;
e294.. b164 - b174 =G= 0;
e295.. b165 - b175 =G= 0;
* set non-default bounds
x22.up = 40;
x23.up = 40;
x44.up = 30;
x45.up = 30;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% maximizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

