MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance syn10m02hfsg
Selection of optimal configuration and parameters for a processing system selected from a superstructure containing alternative processing units and interconnections. Equivalent perspective reformulation of syn10m02.
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 2310.46438100 (ALPHAECP) 2310.96065300 (ANTIGONE) 2310.30071800 (BARON) 2310.30069100 (BONMIN) 2310.30234400 (COUENNE) 2310.30069100 (LINDO) 2310.30137400 (SCIP) 5309.56963600 (SHOT) |
Referencesⓘ | Duran, Marco A and Grossmann, I E, An Outer-Approximation Algorithm for a Class of Mixed-integer Nonlinear Programs, Mathematical Programming, 36:3, 1986, 307-339. Türkay, Metin and Grossmann, I E, Logic-based MINLP Algorithms for optimal synthesis of process networks, Computers and Chemical Engineering, 20:8, 1996, 959-978. Kevin C. Furman, Nicolas W. Sawaya, Ignacio E. Grossmann, A computationally useful algebraic representation of nonlinear disjunctive convex sets using the perspective function, Tech. Rep., 2019. |
Applicationⓘ | Synthesis of processing system |
Added to libraryⓘ | 25 Sep 2019 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 194 |
#Binary Variablesⓘ | 40 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 36 |
#Nonlinear Binary Variablesⓘ | 12 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | max |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 38 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 294 |
#Linear Constraintsⓘ | 282 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 12 |
Operands in Gen. Nonlin. Functionsⓘ | div log mul |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 634 |
#Nonlinear Nonzeros in Jacobianⓘ | 36 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 72 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 24 |
#Blocks in Hessian of Lagrangianⓘ | 12 |
Minimal blocksize in Hessian of Lagrangianⓘ | 3 |
Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
Average blocksize in Hessian of Lagrangianⓘ | 3.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-03 |
Maximal coefficientⓘ | 4.0500e+02 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 295 129 20 146 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 195 155 40 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 673 637 36 0 * * Solve m using MINLP maximizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35 ,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52 ,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69 ,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86 ,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102 ,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115 ,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128 ,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141 ,x142,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154 ,x155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167 ,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180 ,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193 ,b194,b195; Positive Variables x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35 ,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52 ,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69 ,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86 ,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102 ,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115 ,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128 ,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141 ,x142,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154 ,x155; Binary Variables b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167 ,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180 ,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193 ,b194,b195; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142 ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155 ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168 ,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181 ,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194 ,e195,e196,e197,e198,e199,e200,e201,e202,e203,e204,e205,e206,e207 ,e208,e209,e210,e211,e212,e213,e214,e215,e216,e217,e218,e219,e220 ,e221,e222,e223,e224,e225,e226,e227,e228,e229,e230,e231,e232,e233 ,e234,e235,e236,e237,e238,e239,e240,e241,e242,e243,e244,e245,e246 ,e247,e248,e249,e250,e251,e252,e253,e254,e255,e256,e257,e258,e259 ,e260,e261,e262,e263,e264,e265,e266,e267,e268,e269,e270,e271,e272 ,e273,e274,e275,e276,e277,e278,e279,e280,e281,e282,e283,e284,e285 ,e286,e287,e288,e289,e290,e291,e292,e293,e294,e295; e1.. objvar + x22 + x23 - 5*x34 - 10*x35 + 2*x44 + x45 - 80*x60 - 90*x61 - 285*x62 - 390*x63 - 290*x64 - 405*x65 - 280*x66 - 400*x67 - 290*x68 - 300*x69 - 350*x70 - 250*x71 + 5*b176 + 4*b177 + 8*b178 + 7*b179 + 6*b180 + 9*b181 + 10*b182 + 9*b183 + 6*b184 + 10*b185 + 7*b186 + 7*b187 + 4*b188 + 3*b189 + 5*b190 + 6*b191 + 2*b192 + 5*b193 + 4*b194 + 7*b195 =E= 0; e2.. x22 - x24 - x26 =E= 0; e3.. x23 - x25 - x27 =E= 0; e4.. - x28 - x30 + x32 =E= 0; e5.. - x29 - x31 + x33 =E= 0; e6.. x32 - x34 - x36 =E= 0; e7.. x33 - x35 - x37 =E= 0; e8.. x36 - x38 - x40 - x42 =E= 0; e9.. x37 - x39 - x41 - x43 =E= 0; e10.. x46 - x52 - x54 =E= 0; e11.. x47 - x53 - x55 =E= 0; e12.. x50 - x56 - x58 - x60 =E= 0; e13.. x51 - x57 - x59 - x61 =E= 0; e14.. (x80/(0.001 + 0.999*b156) - log(1 + x72/(0.001 + 0.999*b156)))*(0.001 + 0.999*b156) =L= 0; e15.. (x81/(0.001 + 0.999*b157) - log(1 + x73/(0.001 + 0.999*b157)))*(0.001 + 0.999*b157) =L= 0; e16.. x74 =E= 0; e17.. x75 =E= 0; e18.. x82 =E= 0; e19.. x83 =E= 0; e20.. x24 - x72 - x74 =E= 0; e21.. x25 - x73 - x75 =E= 0; e22.. x28 - x80 - x82 =E= 0; e23.. x29 - x81 - x83 =E= 0; e24.. x72 - 40*b156 =L= 0; e25.. x73 - 40*b157 =L= 0; e26.. x74 + 40*b156 =L= 40; e27.. x75 + 40*b157 =L= 40; e28.. x80 - 3.71357206670431*b156 =L= 0; e29.. x81 - 3.71357206670431*b157 =L= 0; e30.. x82 + 3.71357206670431*b156 =L= 3.71357206670431; e31.. x83 + 3.71357206670431*b157 =L= 3.71357206670431; e32.. (x84/(0.001 + 0.999*b158) - 1.2*log(1 + x76/(0.001 + 0.999*b158)))*(0.001 + 0.999*b158) =L= 0; e33.. (x85/(0.001 + 0.999*b159) - 1.2*log(1 + x77/(0.001 + 0.999*b159)))*(0.001 + 0.999*b159) =L= 0; e34.. x78 =E= 0; e35.. x79 =E= 0; e36.. x86 =E= 0; e37.. x87 =E= 0; e38.. x26 - x76 - x78 =E= 0; e39.. x27 - x77 - x79 =E= 0; e40.. x30 - x84 - x86 =E= 0; e41.. x31 - x85 - x87 =E= 0; e42.. x76 - 40*b158 =L= 0; e43.. x77 - 40*b159 =L= 0; e44.. x78 + 40*b158 =L= 40; e45.. x79 + 40*b159 =L= 40; e46.. x84 - 4.45628648004517*b158 =L= 0; e47.. x85 - 4.45628648004517*b159 =L= 0; e48.. x86 + 4.45628648004517*b158 =L= 4.45628648004517; e49.. x87 + 4.45628648004517*b159 =L= 4.45628648004517; e50.. - 0.75*x88 + x104 =E= 0; e51.. - 0.75*x89 + x105 =E= 0; e52.. x90 =E= 0; e53.. x91 =E= 0; e54.. x106 =E= 0; e55.. x107 =E= 0; e56.. x38 - x88 - x90 =E= 0; e57.. x39 - x89 - x91 =E= 0; e58.. x46 - x104 - x106 =E= 0; e59.. x47 - x105 - x107 =E= 0; e60.. x88 - 4.45628648004517*b160 =L= 0; e61.. x89 - 4.45628648004517*b161 =L= 0; e62.. x90 + 4.45628648004517*b160 =L= 4.45628648004517; e63.. x91 + 4.45628648004517*b161 =L= 4.45628648004517; e64.. x104 - 3.34221486003388*b160 =L= 0; e65.. x105 - 3.34221486003388*b161 =L= 0; e66.. x106 + 3.34221486003388*b160 =L= 3.34221486003388; e67.. x107 + 3.34221486003388*b161 =L= 3.34221486003388; e68.. (x108/(0.001 + 0.999*b162) - 1.5*log(1 + x92/(0.001 + 0.999*b162)))*( 0.001 + 0.999*b162) =L= 0; e69.. (x109/(0.001 + 0.999*b163) - 1.5*log(1 + x93/(0.001 + 0.999*b163)))*( 0.001 + 0.999*b163) =L= 0; e70.. x94 =E= 0; e71.. x95 =E= 0; e72.. x112 =E= 0; e73.. x113 =E= 0; e74.. x40 - x92 - x94 =E= 0; e75.. x41 - x93 - x95 =E= 0; e76.. x48 - x108 - x112 =E= 0; e77.. x49 - x109 - x113 =E= 0; e78.. x92 - 4.45628648004517*b162 =L= 0; e79.. x93 - 4.45628648004517*b163 =L= 0; e80.. x94 + 4.45628648004517*b162 =L= 4.45628648004517; e81.. x95 + 4.45628648004517*b163 =L= 4.45628648004517; e82.. x108 - 2.54515263975353*b162 =L= 0; e83.. x109 - 2.54515263975353*b163 =L= 0; e84.. x112 + 2.54515263975353*b162 =L= 2.54515263975353; e85.. x113 + 2.54515263975353*b163 =L= 2.54515263975353; e86.. - x96 + x116 =E= 0; e87.. - x97 + x117 =E= 0; e88.. - 0.5*x100 + x116 =E= 0; e89.. - 0.5*x101 + x117 =E= 0; e90.. x98 =E= 0; e91.. x99 =E= 0; e92.. x102 =E= 0; e93.. x103 =E= 0; e94.. x118 =E= 0; e95.. x119 =E= 0; e96.. x42 - x96 - x98 =E= 0; e97.. x43 - x97 - x99 =E= 0; e98.. x44 - x100 - x102 =E= 0; e99.. x45 - x101 - x103 =E= 0; e100.. x50 - x116 - x118 =E= 0; e101.. x51 - x117 - x119 =E= 0; e102.. x96 - 4.45628648004517*b164 =L= 0; e103.. x97 - 4.45628648004517*b165 =L= 0; e104.. x98 + 4.45628648004517*b164 =L= 4.45628648004517; e105.. x99 + 4.45628648004517*b165 =L= 4.45628648004517; e106.. x100 - 30*b164 =L= 0; e107.. x101 - 30*b165 =L= 0; e108.. x102 + 30*b164 =L= 30; e109.. x103 + 30*b165 =L= 30; e110.. x116 - 15*b164 =L= 0; e111.. x117 - 15*b165 =L= 0; e112.. x118 + 15*b164 =L= 15; e113.. x119 + 15*b165 =L= 15; e114.. (x136/(0.001 + 0.999*b166) - 1.25*log(1 + x120/(0.001 + 0.999*b166)))*( 0.001 + 0.999*b166) =L= 0; e115.. (x137/(0.001 + 0.999*b167) - 1.25*log(1 + x121/(0.001 + 0.999*b167)))*( 0.001 + 0.999*b167) =L= 0; e116.. x122 =E= 0; e117.. x123 =E= 0; e118.. x138 =E= 0; e119.. x139 =E= 0; e120.. x52 - x120 - x122 =E= 0; e121.. x53 - x121 - x123 =E= 0; e122.. x62 - x136 - x138 =E= 0; e123.. x63 - x137 - x139 =E= 0; e124.. x120 - 3.34221486003388*b166 =L= 0; e125.. x121 - 3.34221486003388*b167 =L= 0; e126.. x122 + 3.34221486003388*b166 =L= 3.34221486003388; e127.. x123 + 3.34221486003388*b167 =L= 3.34221486003388; e128.. x136 - 1.83548069293539*b166 =L= 0; e129.. x137 - 1.83548069293539*b167 =L= 0; e130.. x138 + 1.83548069293539*b166 =L= 1.83548069293539; e131.. x139 + 1.83548069293539*b167 =L= 1.83548069293539; e132.. (x140/(0.001 + 0.999*b168) - 0.9*log(1 + x124/(0.001 + 0.999*b168)))*( 0.001 + 0.999*b168) =L= 0; e133.. (x141/(0.001 + 0.999*b169) - 0.9*log(1 + x125/(0.001 + 0.999*b169)))*( 0.001 + 0.999*b169) =L= 0; e134.. x126 =E= 0; e135.. x127 =E= 0; e136.. x142 =E= 0; e137.. x143 =E= 0; e138.. x54 - x124 - x126 =E= 0; e139.. x55 - x125 - x127 =E= 0; e140.. x64 - x140 - x142 =E= 0; e141.. x65 - x141 - x143 =E= 0; e142.. x124 - 3.34221486003388*b168 =L= 0; e143.. x125 - 3.34221486003388*b169 =L= 0; e144.. x126 + 3.34221486003388*b168 =L= 3.34221486003388; e145.. x127 + 3.34221486003388*b169 =L= 3.34221486003388; e146.. x140 - 1.32154609891348*b168 =L= 0; e147.. x141 - 1.32154609891348*b169 =L= 0; e148.. x142 + 1.32154609891348*b168 =L= 1.32154609891348; e149.. x143 + 1.32154609891348*b169 =L= 1.32154609891348; e150.. (x144/(0.001 + 0.999*b170) - log(1 + x110/(0.001 + 0.999*b170)))*(0.001 + 0.999*b170) =L= 0; e151.. (x145/(0.001 + 0.999*b171) - log(1 + x111/(0.001 + 0.999*b171)))*(0.001 + 0.999*b171) =L= 0; e152.. x114 =E= 0; e153.. x115 =E= 0; e154.. x146 =E= 0; e155.. x147 =E= 0; e156.. x48 - x110 - x114 =E= 0; e157.. x49 - x111 - x115 =E= 0; e158.. x66 - x144 - x146 =E= 0; e159.. x67 - x145 - x147 =E= 0; e160.. x110 - 2.54515263975353*b170 =L= 0; e161.. x111 - 2.54515263975353*b171 =L= 0; e162.. x114 + 2.54515263975353*b170 =L= 2.54515263975353; e163.. x115 + 2.54515263975353*b171 =L= 2.54515263975353; e164.. x144 - 1.26558121681553*b170 =L= 0; e165.. x145 - 1.26558121681553*b171 =L= 0; e166.. x146 + 1.26558121681553*b170 =L= 1.26558121681553; e167.. x147 + 1.26558121681553*b171 =L= 1.26558121681553; e168.. - 0.9*x128 + x148 =E= 0; e169.. - 0.9*x129 + x149 =E= 0; e170.. x130 =E= 0; e171.. x131 =E= 0; e172.. x150 =E= 0; e173.. x151 =E= 0; e174.. x56 - x128 - x130 =E= 0; e175.. x57 - x129 - x131 =E= 0; e176.. x68 - x148 - x150 =E= 0; e177.. x69 - x149 - x151 =E= 0; e178.. x128 - 15*b172 =L= 0; e179.. x129 - 15*b173 =L= 0; e180.. x130 + 15*b172 =L= 15; e181.. x131 + 15*b173 =L= 15; e182.. x148 - 13.5*b172 =L= 0; e183.. x149 - 13.5*b173 =L= 0; e184.. x150 + 13.5*b172 =L= 13.5; e185.. x151 + 13.5*b173 =L= 13.5; e186.. - 0.6*x132 + x152 =E= 0; e187.. - 0.6*x133 + x153 =E= 0; e188.. x134 =E= 0; e189.. x135 =E= 0; e190.. x154 =E= 0; e191.. x155 =E= 0; e192.. x58 - x132 - x134 =E= 0; e193.. x59 - x133 - x135 =E= 0; e194.. x70 - x152 - x154 =E= 0; e195.. x71 - x153 - x155 =E= 0; e196.. x132 - 15*b174 =L= 0; e197.. x133 - 15*b175 =L= 0; e198.. x134 + 15*b174 =L= 15; e199.. x135 + 15*b175 =L= 15; e200.. x152 - 9*b174 =L= 0; e201.. x153 - 9*b175 =L= 0; e202.. x154 + 9*b174 =L= 9; e203.. x155 + 9*b175 =L= 9; e204.. x2 + 5*b176 =E= 0; e205.. x3 + 4*b177 =E= 0; e206.. x4 + 8*b178 =E= 0; e207.. x5 + 7*b179 =E= 0; e208.. x6 + 6*b180 =E= 0; e209.. x7 + 9*b181 =E= 0; e210.. x8 + 10*b182 =E= 0; e211.. x9 + 9*b183 =E= 0; e212.. x10 + 6*b184 =E= 0; e213.. x11 + 10*b185 =E= 0; e214.. x12 + 7*b186 =E= 0; e215.. x13 + 7*b187 =E= 0; e216.. x14 + 4*b188 =E= 0; e217.. x15 + 3*b189 =E= 0; e218.. x16 + 5*b190 =E= 0; e219.. x17 + 6*b191 =E= 0; e220.. x18 + 2*b192 =E= 0; e221.. x19 + 5*b193 =E= 0; e222.. x20 + 4*b194 =E= 0; e223.. x21 + 7*b195 =E= 0; e224.. b156 - b157 =L= 0; e225.. b158 - b159 =L= 0; e226.. b160 - b161 =L= 0; e227.. b162 - b163 =L= 0; e228.. b164 - b165 =L= 0; e229.. b166 - b167 =L= 0; e230.. b168 - b169 =L= 0; e231.. b170 - b171 =L= 0; e232.. b172 - b173 =L= 0; e233.. b174 - b175 =L= 0; e234.. b176 + b177 =L= 1; e235.. b176 + b177 =L= 1; e236.. b178 + b179 =L= 1; e237.. b178 + b179 =L= 1; e238.. b180 + b181 =L= 1; e239.. b180 + b181 =L= 1; e240.. b182 + b183 =L= 1; e241.. b182 + b183 =L= 1; e242.. b184 + b185 =L= 1; e243.. b184 + b185 =L= 1; e244.. b186 + b187 =L= 1; e245.. b186 + b187 =L= 1; e246.. b188 + b189 =L= 1; e247.. b188 + b189 =L= 1; e248.. b190 + b191 =L= 1; e249.. b190 + b191 =L= 1; e250.. b192 + b193 =L= 1; e251.. b192 + b193 =L= 1; e252.. b194 + b195 =L= 1; e253.. b194 + b195 =L= 1; e254.. b156 - b176 =L= 0; e255.. - b156 + b157 - b177 =L= 0; e256.. b158 - b178 =L= 0; e257.. - b158 + b159 - b179 =L= 0; e258.. b160 - b180 =L= 0; e259.. - b160 + b161 - b181 =L= 0; e260.. b162 - b182 =L= 0; e261.. - b162 + b163 - b183 =L= 0; e262.. b164 - b184 =L= 0; e263.. - b164 + b165 - b185 =L= 0; e264.. b166 - b186 =L= 0; e265.. - b166 + b167 - b187 =L= 0; e266.. b168 - b188 =L= 0; e267.. - b168 + b169 - b189 =L= 0; e268.. b170 - b190 =L= 0; e269.. - b170 + b171 - b191 =L= 0; e270.. b172 - b192 =L= 0; e271.. - b172 + b173 - b193 =L= 0; e272.. b174 - b194 =L= 0; e273.. - b174 + b175 - b195 =L= 0; e274.. b156 + b158 =E= 1; e275.. b157 + b159 =E= 1; e276.. - b160 + b166 + b168 =G= 0; e277.. - b161 + b167 + b169 =G= 0; e278.. - b162 + b170 =G= 0; e279.. - b163 + b171 =G= 0; e280.. b156 + b158 - b160 =G= 0; e281.. b157 + b159 - b161 =G= 0; e282.. b156 + b158 - b162 =G= 0; e283.. b157 + b159 - b163 =G= 0; e284.. b156 + b158 - b164 =G= 0; e285.. b157 + b159 - b165 =G= 0; e286.. b160 - b166 =G= 0; e287.. b161 - b167 =G= 0; e288.. b160 - b168 =G= 0; e289.. b161 - b169 =G= 0; e290.. b162 - b170 =G= 0; e291.. b163 - b171 =G= 0; e292.. b164 - b172 =G= 0; e293.. b165 - b173 =G= 0; e294.. b164 - b174 =G= 0; e295.. b165 - b175 =G= 0; * set non-default bounds x22.up = 40; x23.up = 40; x44.up = 30; x45.up = 30; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% maximizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f