MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance syn15m
Selection of optimal configuration and parameters for a processing system selected from a superstructure containing alternative processing units and interconnections.
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 853.28473000 (ALPHAECP) 853.28500000 (ANTIGONE) 853.28473000 (BARON) 853.28473000 (BONMIN) 853.28474660 (COUENNE) 853.28473000 (LINDO) 853.28478490 (SCIP) 853.28500760 (SHOT) |
Referencesⓘ | Duran, Marco A and Grossmann, I E, An Outer-Approximation Algorithm for a Class of Mixed-integer Nonlinear Programs, Mathematical Programming, 36:3, 1986, 307-339. Türkay, Metin and Grossmann, I E, Logic-based MINLP Algorithms for optimal synthesis of process networks, Computers and Chemical Engineering, 20:8, 1996, 959-978. |
Sourceⓘ | Syn15M.gms from CMU-IBM MINLP solver project page |
Applicationⓘ | Synthesis of processing system |
Added to libraryⓘ | 28 Sep 2013 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 55 |
#Binary Variablesⓘ | 15 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 11 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | max |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 22 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 89 |
#Linear Constraintsⓘ | 78 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 11 |
Operands in Gen. Nonlin. Functionsⓘ | log |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 223 |
#Nonlinear Nonzeros in Jacobianⓘ | 11 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 11 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 11 |
#Blocks in Hessian of Lagrangianⓘ | 11 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 5.0000e-01 |
Maximal coefficientⓘ | 5.0000e+02 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 90 12 27 51 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 56 41 15 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 246 235 11 0 * * Solve m using MINLP maximizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35 ,x36,x37,x38,x39,x40,x41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52 ,b53,b54,b55,b56; Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41; Binary Variables b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53,b54,b55,b56; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90; e1.. objvar - 5*x8 - 500*x26 - 350*x27 - 200*x38 - 250*x39 - 200*x40 - 200*x41 + 5*b42 + 8*b43 + 6*b44 + 10*b45 + 6*b46 + 7*b47 + 4*b48 + 5*b49 + 2*b50 + 4*b51 + 3*b52 + 7*b53 + 3*b54 + 2*b55 + 4*b56 =E= 0; e2.. x2 - x3 - x4 =E= 0; e3.. - x5 - x6 + x7 =E= 0; e4.. x7 - x8 - x9 =E= 0; e5.. x9 - x10 - x11 - x12 =E= 0; e6.. x14 - x17 - x18 =E= 0; e7.. x16 - x19 - x20 - x21 =E= 0; e8.. x24 - x28 - x29 =E= 0; e9.. - x25 - x31 + x32 =E= 0; e10.. x26 - x33 - x34 =E= 0; e11.. x27 - x35 - x36 - x37 =E= 0; e12.. -log(1 + x3) + x5 + b42 =L= 1; e13.. x3 - 10*b42 =L= 0; e14.. x5 - 2.39789527279837*b42 =L= 0; e15.. -1.2*log(1 + x4) + x6 + b43 =L= 1; e16.. x4 - 10*b43 =L= 0; e17.. x6 - 2.87747432735804*b43 =L= 0; e18.. - 0.75*x10 + x14 + b44 =L= 1; e19.. - 0.75*x10 + x14 - b44 =G= -1; e20.. x10 - 2.87747432735804*b44 =L= 0; e21.. x14 - 2.15810574551853*b44 =L= 0; e22.. -1.5*log(1 + x11) + x15 + b45 =L= 1; e23.. x11 - 2.87747432735804*b45 =L= 0; e24.. x15 - 2.03277599268042*b45 =L= 0; e25.. - x12 + x16 + b46 =L= 1; e26.. - x12 + x16 - b46 =G= -1; e27.. - 0.5*x13 + x16 + b46 =L= 1; e28.. - 0.5*x13 + x16 - b46 =G= -1; e29.. x12 - 2.87747432735804*b46 =L= 0; e30.. x13 - 7*b46 =L= 0; e31.. x16 - 3.5*b46 =L= 0; e32.. -1.25*log(1 + x17) + x22 + b47 =L= 1; e33.. x17 - 2.15810574551853*b47 =L= 0; e34.. x22 - 1.43746550029693*b47 =L= 0; e35.. -0.9*log(1 + x18) + x23 + b48 =L= 1; e36.. x18 - 2.15810574551853*b48 =L= 0; e37.. x23 - 1.03497516021379*b48 =L= 0; e38.. -log(1 + x15) + x24 + b49 =L= 1; e39.. x15 - 2.03277599268042*b49 =L= 0; e40.. x24 - 1.10947836929589*b49 =L= 0; e41.. - 0.9*x19 + x25 + b50 =L= 1; e42.. - 0.9*x19 + x25 - b50 =G= -1; e43.. x19 - 3.5*b50 =L= 0; e44.. x25 - 3.15*b50 =L= 0; e45.. - 0.6*x20 + x26 + b51 =L= 1; e46.. - 0.6*x20 + x26 - b51 =G= -1; e47.. x20 - 3.5*b51 =L= 0; e48.. x26 - 2.1*b51 =L= 0; e49.. -1.1*log(1 + x21) + x27 + b52 =L= 1; e50.. x21 - 3.5*b52 =L= 0; e51.. x27 - 1.6544851364539*b52 =L= 0; e52.. - 0.9*x22 + x38 + b53 =L= 1; e53.. - 0.9*x22 + x38 - b53 =G= -1; e54.. - x30 + x38 + b53 =L= 1; e55.. - x30 + x38 - b53 =G= -1; e56.. x22 - 1.43746550029693*b53 =L= 0; e57.. x30 - 5*b53 =L= 0; e58.. x38 - 5*b53 =L= 0; e59.. -log(1 + x23) + x39 + b54 =L= 1; e60.. x23 - 1.03497516021379*b54 =L= 0; e61.. x39 - 0.710483612536911*b54 =L= 0; e62.. -0.7*log(1 + x28) + x40 + b55 =L= 1; e63.. x28 - 1.10947836929589*b55 =L= 0; e64.. x40 - 0.522508489006913*b55 =L= 0; e65.. -0.65*log(1 + x29) + x41 + b56 =L= 1; e66.. -0.65*log(1 + x32) + x41 + b56 =L= 1; e67.. x29 - 1.10947836929589*b56 =L= 0; e68.. x32 - 8.15*b56 =L= 0; e69.. x41 - 1.43894002153683*b56 =L= 0; e70.. b42 + b43 =E= 1; e71.. - b44 + b47 + b48 =G= 0; e72.. - b47 + b53 =G= 0; e73.. - b48 + b54 =G= 0; e74.. - b45 + b49 =G= 0; e75.. - b49 + b55 + b56 =G= 0; e76.. - b46 + b50 + b51 + b52 =G= 0; e77.. - b50 + b56 =G= 0; e78.. b42 + b43 - b44 =G= 0; e79.. b42 + b43 - b45 =G= 0; e80.. b42 + b43 - b46 =G= 0; e81.. b44 - b47 =G= 0; e82.. b44 - b48 =G= 0; e83.. b45 - b49 =G= 0; e84.. b46 - b50 =G= 0; e85.. b46 - b51 =G= 0; e86.. b46 - b52 =G= 0; e87.. b47 - b53 =G= 0; e88.. b48 - b54 =G= 0; e89.. b49 - b55 =G= 0; e90.. b49 - b56 =G= 0; * set non-default bounds x2.up = 10; x13.up = 7; x30.up = 5; x31.up = 5; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% maximizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f