MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance syn30m
Selection of optimal configuration and parameters for a processing system selected from a superstructure containing alternative processing units and interconnections.
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 138.15960250 (ALPHAECP) 138.16010180 (ANTIGONE) 138.15961290 (BARON) 138.15960250 (BONMIN) 138.15961130 (COUENNE) 138.15960820 (LINDO) 138.15978010 (SCIP) 139.67096280 (SHOT) |
Referencesⓘ | Duran, Marco A and Grossmann, I E, An Outer-Approximation Algorithm for a Class of Mixed-integer Nonlinear Programs, Mathematical Programming, 36:3, 1986, 307-339. Türkay, Metin and Grossmann, I E, Logic-based MINLP Algorithms for optimal synthesis of process networks, Computers and Chemical Engineering, 20:8, 1996, 959-978. |
Sourceⓘ | Syn30M.gms from CMU-IBM MINLP solver project page |
Applicationⓘ | Synthesis of processing system |
Added to libraryⓘ | 28 Sep 2013 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 100 |
#Binary Variablesⓘ | 30 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 20 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | max |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 51 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 167 |
#Linear Constraintsⓘ | 147 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 20 |
Operands in Gen. Nonlin. Functionsⓘ | log |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 415 |
#Nonlinear Nonzeros in Jacobianⓘ | 20 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 20 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 20 |
#Blocks in Hessian of Lagrangianⓘ | 20 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 4.8023e-01 |
Maximal coefficientⓘ | 3.5000e+02 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 168 19 51 98 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 101 71 30 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 467 447 20 0 * * Solve m using MINLP maximizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35 ,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52 ,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69 ,x70,x71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86 ,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101; Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51 ,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68 ,x69,x70,x71; Binary Variables b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86 ,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142 ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155 ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168; e1.. objvar + x2 - 5*x8 + 2*x13 + 10*x30 + 5*x31 - 40*x38 - 15*x39 - 10*x40 - 30*x41 - 35*x42 - 20*x43 - 25*x44 - 15*x45 - 30*x53 + x58 - 80*x66 - 285*x67 - 290*x68 - 280*x69 - 290*x70 - 350*x71 + 5*b72 + 8*b73 + 6*b74 + 10*b75 + 6*b76 + 7*b77 + 4*b78 + 5*b79 + 2*b80 + 4*b81 + 3*b82 + 7*b83 + 3*b84 + 2*b85 + 4*b86 + 2*b87 + 3*b88 + 5*b89 + 2*b90 + b91 + 2*b92 + 9*b93 + 5*b94 + 2*b95 + 10*b96 + 4*b97 + 7*b98 + 4*b99 + 2*b100 + 8*b101 =E= 0; e2.. x2 - x3 - x4 =E= 0; e3.. - x5 - x6 + x7 =E= 0; e4.. x7 - x8 - x9 =E= 0; e5.. x9 - x10 - x11 - x12 =E= 0; e6.. x14 - x17 - x18 =E= 0; e7.. x16 - x19 - x20 - x21 =E= 0; e8.. x24 - x28 - x29 =E= 0; e9.. - x25 - x31 + x32 =E= 0; e10.. x26 - x33 - x34 =E= 0; e11.. x27 - x35 - x36 - x37 =E= 0; e12.. x46 - x47 =E= 0; e13.. x47 - x48 - x49 =E= 0; e14.. - x50 - x51 + x52 =E= 0; e15.. x52 - x53 - x54 =E= 0; e16.. x54 - x55 - x56 - x57 =E= 0; e17.. x59 - x62 - x63 =E= 0; e18.. x61 - x64 - x65 - x66 =E= 0; e19.. -log(1 + x3) + x5 + b72 =L= 1; e20.. x3 - 40*b72 =L= 0; e21.. x5 - 3.71357206670431*b72 =L= 0; e22.. -1.2*log(1 + x4) + x6 + b73 =L= 1; e23.. x4 - 40*b73 =L= 0; e24.. x6 - 4.45628648004517*b73 =L= 0; e25.. - 0.75*x10 + x14 + b74 =L= 1; e26.. - 0.75*x10 + x14 - b74 =G= -1; e27.. x10 - 4.45628648004517*b74 =L= 0; e28.. x14 - 3.34221486003388*b74 =L= 0; e29.. -1.5*log(1 + x11) + x15 + b75 =L= 1; e30.. x11 - 4.45628648004517*b75 =L= 0; e31.. x15 - 2.54515263975353*b75 =L= 0; e32.. - x12 + x16 + b76 =L= 1; e33.. - x12 + x16 - b76 =G= -1; e34.. - 0.5*x13 + x16 + b76 =L= 1; e35.. - 0.5*x13 + x16 - b76 =G= -1; e36.. x12 - 4.45628648004517*b76 =L= 0; e37.. x13 - 30*b76 =L= 0; e38.. x16 - 15*b76 =L= 0; e39.. -1.25*log(1 + x17) + x22 + b77 =L= 1; e40.. x17 - 3.34221486003388*b77 =L= 0; e41.. x22 - 1.83548069293539*b77 =L= 0; e42.. -0.9*log(1 + x18) + x23 + b78 =L= 1; e43.. x18 - 3.34221486003388*b78 =L= 0; e44.. x23 - 1.32154609891348*b78 =L= 0; e45.. -log(1 + x15) + x24 + b79 =L= 1; e46.. x15 - 2.54515263975353*b79 =L= 0; e47.. x24 - 1.26558121681553*b79 =L= 0; e48.. - 0.9*x19 + x25 + b80 =L= 1; e49.. - 0.9*x19 + x25 - b80 =G= -1; e50.. x19 - 15*b80 =L= 0; e51.. x25 - 13.5*b80 =L= 0; e52.. - 0.6*x20 + x26 + b81 =L= 1; e53.. - 0.6*x20 + x26 - b81 =G= -1; e54.. x20 - 15*b81 =L= 0; e55.. x26 - 9*b81 =L= 0; e56.. -1.1*log(1 + x21) + x27 + b82 =L= 1; e57.. x21 - 15*b82 =L= 0; e58.. x27 - 3.04984759446376*b82 =L= 0; e59.. - 0.9*x22 + x38 + b83 =L= 1; e60.. - 0.9*x22 + x38 - b83 =G= -1; e61.. - x30 + x38 + b83 =L= 1; e62.. - x30 + x38 - b83 =G= -1; e63.. x22 - 1.83548069293539*b83 =L= 0; e64.. x30 - 20*b83 =L= 0; e65.. x38 - 20*b83 =L= 0; e66.. -log(1 + x23) + x39 + b84 =L= 1; e67.. x23 - 1.32154609891348*b84 =L= 0; e68.. x39 - 0.842233385663186*b84 =L= 0; e69.. -0.7*log(1 + x28) + x40 + b85 =L= 1; e70.. x28 - 1.26558121681553*b85 =L= 0; e71.. x40 - 0.572481933717686*b85 =L= 0; e72.. -0.65*log(1 + x29) + x41 + b86 =L= 1; e73.. -0.65*log(1 + x32) + x41 + b86 =L= 1; e74.. x29 - 1.26558121681553*b86 =L= 0; e75.. x32 - 33.5*b86 =L= 0; e76.. x41 - 2.30162356062425*b86 =L= 0; e77.. - x33 + x42 + b87 =L= 1; e78.. - x33 + x42 - b87 =G= -1; e79.. x33 - 9*b87 =L= 0; e80.. x42 - 9*b87 =L= 0; e81.. - x34 + x43 + b88 =L= 1; e82.. - x34 + x43 - b88 =G= -1; e83.. x34 - 9*b88 =L= 0; e84.. x43 - 9*b88 =L= 0; e85.. -0.75*log(1 + x35) + x44 + b89 =L= 1; e86.. x35 - 3.04984759446376*b89 =L= 0; e87.. x44 - 1.04900943706034*b89 =L= 0; e88.. -0.8*log(1 + x36) + x45 + b90 =L= 1; e89.. x36 - 3.04984759446376*b90 =L= 0; e90.. x45 - 1.11894339953103*b90 =L= 0; e91.. -0.85*log(1 + x37) + x46 + b91 =L= 1; e92.. x37 - 3.04984759446376*b91 =L= 0; e93.. x46 - 1.18887736200171*b91 =L= 0; e94.. -log(1 + x48) + x50 + b92 =L= 1; e95.. x48 - 1.18887736200171*b92 =L= 0; e96.. x50 - 0.78338879230327*b92 =L= 0; e97.. -1.2*log(1 + x49) + x51 + b93 =L= 1; e98.. x49 - 1.18887736200171*b93 =L= 0; e99.. x51 - 0.940066550763924*b93 =L= 0; e100.. - 0.75*x55 + x59 + b94 =L= 1; e101.. - 0.75*x55 + x59 - b94 =G= -1; e102.. x55 - 0.940066550763924*b94 =L= 0; e103.. x59 - 0.705049913072943*b94 =L= 0; e104.. -1.5*log(1 + x56) + x60 + b95 =L= 1; e105.. x56 - 0.940066550763924*b95 =L= 0; e106.. x60 - 0.994083415506506*b95 =L= 0; e107.. - x57 + x61 + b96 =L= 1; e108.. - x57 + x61 - b96 =G= -1; e109.. - 0.5*x58 + x61 + b96 =L= 1; e110.. - 0.5*x58 + x61 - b96 =G= -1; e111.. x57 - 0.940066550763924*b96 =L= 0; e112.. x58 - 30*b96 =L= 0; e113.. x61 - 15*b96 =L= 0; e114.. -1.25*log(1 + x62) + x67 + b97 =L= 1; e115.. x62 - 0.705049913072943*b97 =L= 0; e116.. x67 - 0.666992981045719*b97 =L= 0; e117.. -0.9*log(1 + x63) + x68 + b98 =L= 1; e118.. x63 - 0.705049913072943*b98 =L= 0; e119.. x68 - 0.480234946352917*b98 =L= 0; e120.. -log(1 + x60) + x69 + b99 =L= 1; e121.. x60 - 0.994083415506506*b99 =L= 0; e122.. x69 - 0.690184503917672*b99 =L= 0; e123.. - 0.9*x64 + x70 + b100 =L= 1; e124.. - 0.9*x64 + x70 - b100 =G= -1; e125.. x64 - 15*b100 =L= 0; e126.. x70 - 13.5*b100 =L= 0; e127.. - 0.6*x65 + x71 + b101 =L= 1; e128.. - 0.6*x65 + x71 - b101 =G= -1; e129.. x65 - 15*b101 =L= 0; e130.. x71 - 9*b101 =L= 0; e131.. b72 + b73 =E= 1; e132.. - b74 + b77 + b78 =G= 0; e133.. - b77 + b83 =G= 0; e134.. - b78 + b84 =G= 0; e135.. - b75 + b79 =G= 0; e136.. - b79 + b85 + b86 =G= 0; e137.. - b76 + b80 + b81 + b82 =G= 0; e138.. - b80 + b86 =G= 0; e139.. - b81 + b87 + b88 =G= 0; e140.. - b82 + b89 + b90 + b91 =G= 0; e141.. b72 + b73 - b74 =G= 0; e142.. b72 + b73 - b75 =G= 0; e143.. b72 + b73 - b76 =G= 0; e144.. b74 - b77 =G= 0; e145.. b74 - b78 =G= 0; e146.. b75 - b79 =G= 0; e147.. b76 - b80 =G= 0; e148.. b76 - b81 =G= 0; e149.. b76 - b82 =G= 0; e150.. b77 - b83 =G= 0; e151.. b78 - b84 =G= 0; e152.. b79 - b85 =G= 0; e153.. b79 - b86 =G= 0; e154.. b81 - b87 =G= 0; e155.. b81 - b88 =G= 0; e156.. b82 - b89 =G= 0; e157.. b82 - b90 =G= 0; e158.. b82 - b91 =G= 0; e159.. - b91 + b92 + b93 =G= 0; e160.. - b94 + b97 + b98 =G= 0; e161.. - b95 + b99 =G= 0; e162.. b91 - b92 =G= 0; e163.. b91 - b93 =G= 0; e164.. b94 - b97 =G= 0; e165.. b94 - b98 =G= 0; e166.. b95 - b99 =G= 0; e167.. b96 - b100 =G= 0; e168.. b96 - b101 =G= 0; * set non-default bounds x2.up = 40; x13.up = 30; x30.up = 20; x31.up = 20; x58.up = 30; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% maximizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f