MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance syn40m
Selection of optimal configuration and parameters for a processing system selected from a superstructure containing alternative processing units and interconnections.
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 67.71736100 (ALPHAECP) 67.71343158 (ANTIGONE) 67.71326996 (BARON) 67.71325600 (BONMIN) 949.55011770 (COUENNE) 67.71325586 (LINDO) 67.71336160 (SCIP) 69.01614489 (SHOT) |
Referencesⓘ | Duran, Marco A and Grossmann, I E, An Outer-Approximation Algorithm for a Class of Mixed-integer Nonlinear Programs, Mathematical Programming, 36:3, 1986, 307-339. Türkay, Metin and Grossmann, I E, Logic-based MINLP Algorithms for optimal synthesis of process networks, Computers and Chemical Engineering, 20:8, 1996, 959-978. |
Sourceⓘ | Syn40M.gms from CMU-IBM MINLP solver project page |
Applicationⓘ | Synthesis of processing system |
Added to libraryⓘ | 28 Sep 2013 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 130 |
#Binary Variablesⓘ | 40 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 28 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | max |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 66 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 226 |
#Linear Constraintsⓘ | 198 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 28 |
Operands in Gen. Nonlin. Functionsⓘ | log |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 560 |
#Nonlinear Nonzeros in Jacobianⓘ | 28 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 28 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 28 |
#Blocks in Hessian of Lagrangianⓘ | 28 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 3.6739e-01 |
Maximal coefficientⓘ | 3.5000e+02 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 227 23 72 132 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 131 91 40 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 627 599 28 0 * * Solve m using MINLP maximizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35 ,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52 ,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69 ,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86 ,x87,x88,x89,x90,x91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102 ,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115 ,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128 ,b129,b130,b131; Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51 ,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68 ,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85 ,x86,x87,x88,x89,x90,x91; Binary Variables b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103,b104 ,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116,b117 ,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,b129,b130 ,b131; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142 ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155 ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168 ,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181 ,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194 ,e195,e196,e197,e198,e199,e200,e201,e202,e203,e204,e205,e206,e207 ,e208,e209,e210,e211,e212,e213,e214,e215,e216,e217,e218,e219,e220 ,e221,e222,e223,e224,e225,e226,e227; e1.. objvar + x2 - 5*x8 + 2*x13 + 10*x30 + 5*x31 - 40*x38 - 15*x39 - 10*x40 - 30*x41 - 35*x42 - 20*x43 - 25*x44 - 15*x45 - 30*x53 + x58 + 5*x75 + x76 - 120*x83 - 140*x84 - 90*x85 - 80*x86 - 285*x87 - 290*x88 - 280*x89 - 290*x90 - 350*x91 + 5*b92 + 8*b93 + 6*b94 + 10*b95 + 6*b96 + 7*b97 + 4*b98 + 5*b99 + 2*b100 + 4*b101 + 3*b102 + 7*b103 + 3*b104 + 2*b105 + 4*b106 + 2*b107 + 3*b108 + 5*b109 + 2*b110 + b111 + 2*b112 + 9*b113 + 5*b114 + 2*b115 + 10*b116 + 4*b117 + 7*b118 + 4*b119 + 2*b120 + 8*b121 + 9*b122 + 3*b123 + 5*b124 + 5*b125 + 6*b126 + 2*b127 + 6*b128 + 3*b129 + 5*b130 + 9*b131 =E= 0; e2.. x2 - x3 - x4 =E= 0; e3.. - x5 - x6 + x7 =E= 0; e4.. x7 - x8 - x9 =E= 0; e5.. x9 - x10 - x11 - x12 =E= 0; e6.. x14 - x17 - x18 =E= 0; e7.. x16 - x19 - x20 - x21 =E= 0; e8.. x24 - x28 - x29 =E= 0; e9.. - x25 - x31 + x32 =E= 0; e10.. x26 - x33 - x34 =E= 0; e11.. x27 - x35 - x36 - x37 =E= 0; e12.. x46 - x47 =E= 0; e13.. x47 - x48 - x49 =E= 0; e14.. - x50 - x51 + x52 =E= 0; e15.. x52 - x53 - x54 =E= 0; e16.. x54 - x55 - x56 - x57 =E= 0; e17.. x59 - x62 - x63 =E= 0; e18.. x61 - x64 - x65 - x66 =E= 0; e19.. x69 - x73 - x74 =E= 0; e20.. - x70 - x76 + x77 =E= 0; e21.. x71 - x78 - x79 =E= 0; e22.. x72 - x80 - x81 - x82 =E= 0; e23.. -log(1 + x3) + x5 + b92 =L= 1; e24.. x3 - 40*b92 =L= 0; e25.. x5 - 3.71357206670431*b92 =L= 0; e26.. -1.2*log(1 + x4) + x6 + b93 =L= 1; e27.. x4 - 40*b93 =L= 0; e28.. x6 - 4.45628648004517*b93 =L= 0; e29.. - 0.75*x10 + x14 + b94 =L= 1; e30.. - 0.75*x10 + x14 - b94 =G= -1; e31.. x10 - 4.45628648004517*b94 =L= 0; e32.. x14 - 3.34221486003388*b94 =L= 0; e33.. -1.5*log(1 + x11) + x15 + b95 =L= 1; e34.. x11 - 4.45628648004517*b95 =L= 0; e35.. x15 - 2.54515263975353*b95 =L= 0; e36.. - x12 + x16 + b96 =L= 1; e37.. - x12 + x16 - b96 =G= -1; e38.. - 0.5*x13 + x16 + b96 =L= 1; e39.. - 0.5*x13 + x16 - b96 =G= -1; e40.. x12 - 4.45628648004517*b96 =L= 0; e41.. x13 - 30*b96 =L= 0; e42.. x16 - 15*b96 =L= 0; e43.. -1.25*log(1 + x17) + x22 + b97 =L= 1; e44.. x17 - 3.34221486003388*b97 =L= 0; e45.. x22 - 1.83548069293539*b97 =L= 0; e46.. -0.9*log(1 + x18) + x23 + b98 =L= 1; e47.. x18 - 3.34221486003388*b98 =L= 0; e48.. x23 - 1.32154609891348*b98 =L= 0; e49.. -log(1 + x15) + x24 + b99 =L= 1; e50.. x15 - 2.54515263975353*b99 =L= 0; e51.. x24 - 1.26558121681553*b99 =L= 0; e52.. - 0.9*x19 + x25 + b100 =L= 1; e53.. - 0.9*x19 + x25 - b100 =G= -1; e54.. x19 - 15*b100 =L= 0; e55.. x25 - 13.5*b100 =L= 0; e56.. - 0.6*x20 + x26 + b101 =L= 1; e57.. - 0.6*x20 + x26 - b101 =G= -1; e58.. x20 - 15*b101 =L= 0; e59.. x26 - 9*b101 =L= 0; e60.. -1.1*log(1 + x21) + x27 + b102 =L= 1; e61.. x21 - 15*b102 =L= 0; e62.. x27 - 3.04984759446376*b102 =L= 0; e63.. - 0.9*x22 + x38 + b103 =L= 1; e64.. - 0.9*x22 + x38 - b103 =G= -1; e65.. - x30 + x38 + b103 =L= 1; e66.. - x30 + x38 - b103 =G= -1; e67.. x22 - 1.83548069293539*b103 =L= 0; e68.. x30 - 20*b103 =L= 0; e69.. x38 - 20*b103 =L= 0; e70.. -log(1 + x23) + x39 + b104 =L= 1; e71.. x23 - 1.32154609891348*b104 =L= 0; e72.. x39 - 0.842233385663186*b104 =L= 0; e73.. -0.7*log(1 + x28) + x40 + b105 =L= 1; e74.. x28 - 1.26558121681553*b105 =L= 0; e75.. x40 - 0.572481933717686*b105 =L= 0; e76.. -0.65*log(1 + x29) + x41 + b106 =L= 1; e77.. -0.65*log(1 + x32) + x41 + b106 =L= 1; e78.. x29 - 1.26558121681553*b106 =L= 0; e79.. x32 - 33.5*b106 =L= 0; e80.. x41 - 2.30162356062425*b106 =L= 0; e81.. - x33 + x42 + b107 =L= 1; e82.. - x33 + x42 - b107 =G= -1; e83.. x33 - 9*b107 =L= 0; e84.. x42 - 9*b107 =L= 0; e85.. - x34 + x43 + b108 =L= 1; e86.. - x34 + x43 - b108 =G= -1; e87.. x34 - 9*b108 =L= 0; e88.. x43 - 9*b108 =L= 0; e89.. -0.75*log(1 + x35) + x44 + b109 =L= 1; e90.. x35 - 3.04984759446376*b109 =L= 0; e91.. x44 - 1.04900943706034*b109 =L= 0; e92.. -0.8*log(1 + x36) + x45 + b110 =L= 1; e93.. x36 - 3.04984759446376*b110 =L= 0; e94.. x45 - 1.11894339953103*b110 =L= 0; e95.. -0.85*log(1 + x37) + x46 + b111 =L= 1; e96.. x37 - 3.04984759446376*b111 =L= 0; e97.. x46 - 1.18887736200171*b111 =L= 0; e98.. -log(1 + x48) + x50 + b112 =L= 1; e99.. x48 - 1.18887736200171*b112 =L= 0; e100.. x50 - 0.78338879230327*b112 =L= 0; e101.. -1.2*log(1 + x49) + x51 + b113 =L= 1; e102.. x49 - 1.18887736200171*b113 =L= 0; e103.. x51 - 0.940066550763924*b113 =L= 0; e104.. - 0.75*x55 + x59 + b114 =L= 1; e105.. - 0.75*x55 + x59 - b114 =G= -1; e106.. x55 - 0.940066550763924*b114 =L= 0; e107.. x59 - 0.705049913072943*b114 =L= 0; e108.. -1.5*log(1 + x56) + x60 + b115 =L= 1; e109.. x56 - 0.940066550763924*b115 =L= 0; e110.. x60 - 0.994083415506506*b115 =L= 0; e111.. - x57 + x61 + b116 =L= 1; e112.. - x57 + x61 - b116 =G= -1; e113.. - 0.5*x58 + x61 + b116 =L= 1; e114.. - 0.5*x58 + x61 - b116 =G= -1; e115.. x57 - 0.940066550763924*b116 =L= 0; e116.. x58 - 30*b116 =L= 0; e117.. x61 - 15*b116 =L= 0; e118.. -1.25*log(1 + x62) + x67 + b117 =L= 1; e119.. x62 - 0.705049913072943*b117 =L= 0; e120.. x67 - 0.666992981045719*b117 =L= 0; e121.. -0.9*log(1 + x63) + x68 + b118 =L= 1; e122.. x63 - 0.705049913072943*b118 =L= 0; e123.. x68 - 0.480234946352917*b118 =L= 0; e124.. -log(1 + x60) + x69 + b119 =L= 1; e125.. x60 - 0.994083415506506*b119 =L= 0; e126.. x69 - 0.690184503917672*b119 =L= 0; e127.. - 0.9*x64 + x70 + b120 =L= 1; e128.. - 0.9*x64 + x70 - b120 =G= -1; e129.. x64 - 15*b120 =L= 0; e130.. x70 - 13.5*b120 =L= 0; e131.. - 0.6*x65 + x71 + b121 =L= 1; e132.. - 0.6*x65 + x71 - b121 =G= -1; e133.. x65 - 15*b121 =L= 0; e134.. x71 - 9*b121 =L= 0; e135.. -1.1*log(1 + x66) + x72 + b122 =L= 1; e136.. x66 - 15*b122 =L= 0; e137.. x72 - 3.04984759446376*b122 =L= 0; e138.. - 0.9*x67 + x83 + b123 =L= 1; e139.. - 0.9*x67 + x83 - b123 =G= -1; e140.. - x75 + x83 + b123 =L= 1; e141.. - x75 + x83 - b123 =G= -1; e142.. x67 - 0.666992981045719*b123 =L= 0; e143.. x75 - 25*b123 =L= 0; e144.. x83 - 25*b123 =L= 0; e145.. -log(1 + x68) + x84 + b124 =L= 1; e146.. x68 - 0.480234946352917*b124 =L= 0; e147.. x84 - 0.392200822712722*b124 =L= 0; e148.. -0.7*log(1 + x73) + x85 + b125 =L= 1; e149.. x73 - 0.690184503917672*b125 =L= 0; e150.. x85 - 0.367386387824208*b125 =L= 0; e151.. -0.65*log(1 + x74) + x86 + b126 =L= 1; e152.. -0.65*log(1 + x77) + x86 + b126 =L= 1; e153.. x74 - 0.690184503917672*b126 =L= 0; e154.. x77 - 38.5*b126 =L= 0; e155.. x86 - 2.3895954367396*b126 =L= 0; e156.. - x78 + x87 + b127 =L= 1; e157.. - x78 + x87 - b127 =G= -1; e158.. x78 - 9*b127 =L= 0; e159.. x87 - 9*b127 =L= 0; e160.. - x79 + x88 + b128 =L= 1; e161.. - x79 + x88 - b128 =G= -1; e162.. x79 - 9*b128 =L= 0; e163.. x88 - 9*b128 =L= 0; e164.. -0.75*log(1 + x80) + x89 + b129 =L= 1; e165.. x80 - 3.04984759446376*b129 =L= 0; e166.. x89 - 1.04900943706034*b129 =L= 0; e167.. -0.8*log(1 + x81) + x90 + b130 =L= 1; e168.. x81 - 3.04984759446376*b130 =L= 0; e169.. x90 - 1.11894339953103*b130 =L= 0; e170.. -0.85*log(1 + x82) + x91 + b131 =L= 1; e171.. x82 - 3.04984759446376*b131 =L= 0; e172.. x91 - 1.18887736200171*b131 =L= 0; e173.. b92 + b93 =E= 1; e174.. - b94 + b97 + b98 =G= 0; e175.. - b97 + b103 =G= 0; e176.. - b98 + b104 =G= 0; e177.. - b95 + b99 =G= 0; e178.. - b99 + b105 + b106 =G= 0; e179.. - b96 + b100 + b101 + b102 =G= 0; e180.. - b100 + b106 =G= 0; e181.. - b101 + b107 + b108 =G= 0; e182.. - b102 + b109 + b110 + b111 =G= 0; e183.. b94 - b97 =G= 0; e184.. b94 - b98 =G= 0; e185.. b95 - b99 =G= 0; e186.. b96 - b100 =G= 0; e187.. b96 - b101 =G= 0; e188.. b96 - b102 =G= 0; e189.. b97 - b103 =G= 0; e190.. b98 - b104 =G= 0; e191.. b99 - b105 =G= 0; e192.. b99 - b106 =G= 0; e193.. b101 - b107 =G= 0; e194.. b101 - b108 =G= 0; e195.. b102 - b109 =G= 0; e196.. b102 - b110 =G= 0; e197.. b102 - b111 =G= 0; e198.. - b111 + b112 + b113 =G= 0; e199.. - b114 + b117 + b118 =G= 0; e200.. - b117 + b123 =G= 0; e201.. - b118 + b124 =G= 0; e202.. - b115 + b119 =G= 0; e203.. - b119 + b125 + b126 =G= 0; e204.. - b116 + b120 + b121 + b122 =G= 0; e205.. - b120 + b126 =G= 0; e206.. - b121 + b127 + b128 =G= 0; e207.. - b122 + b129 + b130 + b131 =G= 0; e208.. b114 - b117 =G= 0; e209.. b114 - b118 =G= 0; e210.. b117 - b123 =G= 0; e211.. b118 - b124 =G= 0; e212.. b115 - b119 =G= 0; e213.. b119 - b125 =G= 0; e214.. b119 - b126 =G= 0; e215.. b116 - b120 =G= 0; e216.. b116 - b121 =G= 0; e217.. b116 - b122 =G= 0; e218.. b121 - b127 =G= 0; e219.. b121 - b128 =G= 0; e220.. b122 - b129 =G= 0; e221.. b122 - b130 =G= 0; e222.. b122 - b131 =G= 0; e223.. b92 + b93 - b94 =G= 0; e224.. b92 + b93 - b95 =G= 0; e225.. b92 + b93 - b96 =G= 0; e226.. b111 - b112 =G= 0; e227.. b111 - b113 =G= 0; * set non-default bounds x2.up = 40; x13.up = 30; x30.up = 20; x31.up = 20; x58.up = 30; x75.up = 25; x76.up = 25; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% maximizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f