MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance tln12

Formats ams gms lp mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
102.60000000 p1 ( gdx sol )
(infeas: 0)
95.60000000 p2 ( gdx sol )
(infeas: 0)
90.50000000 p3 ( gdx sol )
(infeas: 0)
Other points (infeas > 1e-08)  
Dual Bounds
87.03674308 (ANTIGONE)
86.90288238 (BARON)
20.60804773 (COUENNE)
86.40000000 (GUROBI)
85.80000000 (LINDO)
87.08756052 (SCIP)
8.30182064 (SHOT)
References Harjunkoski, Iiro, Westerlund, Tapio, Pörn, Ray, and Skrifvars, Hans, Different Transformations for Solving Non-Convex Trim Loss Problems by MINLP, European Journal of Operational Research, 105:3, 1998, 594-603.
Source MacMINLP model trimlon.mod with trimlon12.dat
Application Trim loss minimization problem
Added to library 01 May 2001
Problem type MIQCP
#Variables 168
#Binary Variables 12
#Integer Variables 156
#Nonlinear Variables 156
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 156
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 24
#Nonlinear Nonzeros in Objective 0
#Constraints 72
#Linear Constraints 60
#Quadratic Constraints 12
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 768
#Nonlinear Nonzeros in Jacobian 288
#Nonzeros in (Upper-Left) Hessian of Lagrangian 288
#Nonzeros in Diagonal of Hessian of Lagrangian 0
#Blocks in Hessian of Lagrangian 12
Minimal blocksize in Hessian of Lagrangian 13
Maximal blocksize in Hessian of Lagrangian 13
Average blocksize in Hessian of Lagrangian 13.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e-01
Maximal coefficient 1.0600e+03
Infeasibility of initial point 6920
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         73        1        0       72        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        169        1       12      156        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        793      505      288        0
*
*  Solve m using MINLP minimizing objvar;


Variables  b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,i13,i14,i15,i16,i17,i18,i19
          ,i20,i21,i22,i23,i24,i25,i26,i27,i28,i29,i30,i31,i32,i33,i34,i35,i36
          ,i37,i38,i39,i40,i41,i42,i43,i44,i45,i46,i47,i48,i49,i50,i51,i52,i53
          ,i54,i55,i56,i57,i58,i59,i60,i61,i62,i63,i64,i65,i66,i67,i68,i69,i70
          ,i71,i72,i73,i74,i75,i76,i77,i78,i79,i80,i81,i82,i83,i84,i85,i86,i87
          ,i88,i89,i90,i91,i92,i93,i94,i95,i96,i97,i98,i99,i100,i101,i102,i103
          ,i104,i105,i106,i107,i108,i109,i110,i111,i112,i113,i114,i115,i116
          ,i117,i118,i119,i120,i121,i122,i123,i124,i125,i126,i127,i128,i129
          ,i130,i131,i132,i133,i134,i135,i136,i137,i138,i139,i140,i141,i142
          ,i143,i144,i145,i146,i147,i148,i149,i150,i151,i152,i153,i154,i155
          ,i156,i157,i158,i159,i160,i161,i162,i163,i164,i165,i166,i167,i168
          ,objvar;

Binary Variables  b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12;

Integer Variables  i13,i14,i15,i16,i17,i18,i19,i20,i21,i22,i23,i24,i25,i26,i27
          ,i28,i29,i30,i31,i32,i33,i34,i35,i36,i37,i38,i39,i40,i41,i42,i43,i44
          ,i45,i46,i47,i48,i49,i50,i51,i52,i53,i54,i55,i56,i57,i58,i59,i60,i61
          ,i62,i63,i64,i65,i66,i67,i68,i69,i70,i71,i72,i73,i74,i75,i76,i77,i78
          ,i79,i80,i81,i82,i83,i84,i85,i86,i87,i88,i89,i90,i91,i92,i93,i94,i95
          ,i96,i97,i98,i99,i100,i101,i102,i103,i104,i105,i106,i107,i108,i109
          ,i110,i111,i112,i113,i114,i115,i116,i117,i118,i119,i120,i121,i122
          ,i123,i124,i125,i126,i127,i128,i129,i130,i131,i132,i133,i134,i135
          ,i136,i137,i138,i139,i140,i141,i142,i143,i144,i145,i146,i147,i148
          ,i149,i150,i151,i152,i153,i154,i155,i156,i157,i158,i159,i160,i161
          ,i162,i163,i164,i165,i166,i167,i168;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73;


e1..  - 0.1*b1 - 0.2*b2 - 0.3*b3 - 0.4*b4 - 0.5*b5 - 0.6*b6 - 0.7*b7 - 0.8*b8
      - 0.9*b9 - b10 - 1.1*b11 - 1.2*b12 - i13 - i14 - i15 - i16 - i17 - i18
      - i19 - i20 - i21 - i22 - i23 - i24 + objvar =E= 0;

e2..    350*i25 + 450*i37 + 550*i49 + 650*i61 + 700*i73 + 740*i85 + 800*i97
      + 840*i109 + 910*i121 + 960*i133 + 1010*i145 + 1060*i157 =L= 2100;

e3..    350*i26 + 450*i38 + 550*i50 + 650*i62 + 700*i74 + 740*i86 + 800*i98
      + 840*i110 + 910*i122 + 960*i134 + 1010*i146 + 1060*i158 =L= 2100;

e4..    350*i27 + 450*i39 + 550*i51 + 650*i63 + 700*i75 + 740*i87 + 800*i99
      + 840*i111 + 910*i123 + 960*i135 + 1010*i147 + 1060*i159 =L= 2100;

e5..    350*i28 + 450*i40 + 550*i52 + 650*i64 + 700*i76 + 740*i88 + 800*i100
      + 840*i112 + 910*i124 + 960*i136 + 1010*i148 + 1060*i160 =L= 2100;

e6..    350*i29 + 450*i41 + 550*i53 + 650*i65 + 700*i77 + 740*i89 + 800*i101
      + 840*i113 + 910*i125 + 960*i137 + 1010*i149 + 1060*i161 =L= 2100;

e7..    350*i30 + 450*i42 + 550*i54 + 650*i66 + 700*i78 + 740*i90 + 800*i102
      + 840*i114 + 910*i126 + 960*i138 + 1010*i150 + 1060*i162 =L= 2100;

e8..    350*i31 + 450*i43 + 550*i55 + 650*i67 + 700*i79 + 740*i91 + 800*i103
      + 840*i115 + 910*i127 + 960*i139 + 1010*i151 + 1060*i163 =L= 2100;

e9..    350*i32 + 450*i44 + 550*i56 + 650*i68 + 700*i80 + 740*i92 + 800*i104
      + 840*i116 + 910*i128 + 960*i140 + 1010*i152 + 1060*i164 =L= 2100;

e10..    350*i33 + 450*i45 + 550*i57 + 650*i69 + 700*i81 + 740*i93 + 800*i105
       + 840*i117 + 910*i129 + 960*i141 + 1010*i153 + 1060*i165 =L= 2100;

e11..    350*i34 + 450*i46 + 550*i58 + 650*i70 + 700*i82 + 740*i94 + 800*i106
       + 840*i118 + 910*i130 + 960*i142 + 1010*i154 + 1060*i166 =L= 2100;

e12..    350*i35 + 450*i47 + 550*i59 + 650*i71 + 700*i83 + 740*i95 + 800*i107
       + 840*i119 + 910*i131 + 960*i143 + 1010*i155 + 1060*i167 =L= 2100;

e13..    350*i36 + 450*i48 + 550*i60 + 650*i72 + 700*i84 + 740*i96 + 800*i108
       + 840*i120 + 910*i132 + 960*i144 + 1010*i156 + 1060*i168 =L= 2100;

e14..  - 350*i25 - 450*i37 - 550*i49 - 650*i61 - 700*i73 - 740*i85 - 800*i97
       - 840*i109 - 910*i121 - 960*i133 - 1010*i145 - 1060*i157 =L= -2000;

e15..  - 350*i26 - 450*i38 - 550*i50 - 650*i62 - 700*i74 - 740*i86 - 800*i98
       - 840*i110 - 910*i122 - 960*i134 - 1010*i146 - 1060*i158 =L= -2000;

e16..  - 350*i27 - 450*i39 - 550*i51 - 650*i63 - 700*i75 - 740*i87 - 800*i99
       - 840*i111 - 910*i123 - 960*i135 - 1010*i147 - 1060*i159 =L= -2000;

e17..  - 350*i28 - 450*i40 - 550*i52 - 650*i64 - 700*i76 - 740*i88 - 800*i100
       - 840*i112 - 910*i124 - 960*i136 - 1010*i148 - 1060*i160 =L= -2000;

e18..  - 350*i29 - 450*i41 - 550*i53 - 650*i65 - 700*i77 - 740*i89 - 800*i101
       - 840*i113 - 910*i125 - 960*i137 - 1010*i149 - 1060*i161 =L= -2000;

e19..  - 350*i30 - 450*i42 - 550*i54 - 650*i66 - 700*i78 - 740*i90 - 800*i102
       - 840*i114 - 910*i126 - 960*i138 - 1010*i150 - 1060*i162 =L= -2000;

e20..  - 350*i31 - 450*i43 - 550*i55 - 650*i67 - 700*i79 - 740*i91 - 800*i103
       - 840*i115 - 910*i127 - 960*i139 - 1010*i151 - 1060*i163 =L= -2000;

e21..  - 350*i32 - 450*i44 - 550*i56 - 650*i68 - 700*i80 - 740*i92 - 800*i104
       - 840*i116 - 910*i128 - 960*i140 - 1010*i152 - 1060*i164 =L= -2000;

e22..  - 350*i33 - 450*i45 - 550*i57 - 650*i69 - 700*i81 - 740*i93 - 800*i105
       - 840*i117 - 910*i129 - 960*i141 - 1010*i153 - 1060*i165 =L= -2000;

e23..  - 350*i34 - 450*i46 - 550*i58 - 650*i70 - 700*i82 - 740*i94 - 800*i106
       - 840*i118 - 910*i130 - 960*i142 - 1010*i154 - 1060*i166 =L= -2000;

e24..  - 350*i35 - 450*i47 - 550*i59 - 650*i71 - 700*i83 - 740*i95 - 800*i107
       - 840*i119 - 910*i131 - 960*i143 - 1010*i155 - 1060*i167 =L= -2000;

e25..  - 350*i36 - 450*i48 - 550*i60 - 650*i72 - 700*i84 - 740*i96 - 800*i108
       - 840*i120 - 910*i132 - 960*i144 - 1010*i156 - 1060*i168 =L= -2000;

e26..    i25 + i37 + i49 + i61 + i73 + i85 + i97 + i109 + i121 + i133 + i145
       + i157 =L= 5;

e27..    i26 + i38 + i50 + i62 + i74 + i86 + i98 + i110 + i122 + i134 + i146
       + i158 =L= 5;

e28..    i27 + i39 + i51 + i63 + i75 + i87 + i99 + i111 + i123 + i135 + i147
       + i159 =L= 5;

e29..    i28 + i40 + i52 + i64 + i76 + i88 + i100 + i112 + i124 + i136 + i148
       + i160 =L= 5;

e30..    i29 + i41 + i53 + i65 + i77 + i89 + i101 + i113 + i125 + i137 + i149
       + i161 =L= 5;

e31..    i30 + i42 + i54 + i66 + i78 + i90 + i102 + i114 + i126 + i138 + i150
       + i162 =L= 5;

e32..    i31 + i43 + i55 + i67 + i79 + i91 + i103 + i115 + i127 + i139 + i151
       + i163 =L= 5;

e33..    i32 + i44 + i56 + i68 + i80 + i92 + i104 + i116 + i128 + i140 + i152
       + i164 =L= 5;

e34..    i33 + i45 + i57 + i69 + i81 + i93 + i105 + i117 + i129 + i141 + i153
       + i165 =L= 5;

e35..    i34 + i46 + i58 + i70 + i82 + i94 + i106 + i118 + i130 + i142 + i154
       + i166 =L= 5;

e36..    i35 + i47 + i59 + i71 + i83 + i95 + i107 + i119 + i131 + i143 + i155
       + i167 =L= 5;

e37..    i36 + i48 + i60 + i72 + i84 + i96 + i108 + i120 + i132 + i144 + i156
       + i168 =L= 5;

e38..    b1 - i13 =L= 0;

e39..    b2 - i14 =L= 0;

e40..    b3 - i15 =L= 0;

e41..    b4 - i16 =L= 0;

e42..    b5 - i17 =L= 0;

e43..    b6 - i18 =L= 0;

e44..    b7 - i19 =L= 0;

e45..    b8 - i20 =L= 0;

e46..    b9 - i21 =L= 0;

e47..    b10 - i22 =L= 0;

e48..    b11 - i23 =L= 0;

e49..    b12 - i24 =L= 0;

e50..  - 48*b1 + i13 =L= 0;

e51..  - 48*b2 + i14 =L= 0;

e52..  - 48*b3 + i15 =L= 0;

e53..  - 48*b4 + i16 =L= 0;

e54..  - 48*b5 + i17 =L= 0;

e55..  - 48*b6 + i18 =L= 0;

e56..  - 48*b7 + i19 =L= 0;

e57..  - 48*b8 + i20 =L= 0;

e58..  - 48*b9 + i21 =L= 0;

e59..  - 48*b10 + i22 =L= 0;

e60..  - 48*b11 + i23 =L= 0;

e61..  - 48*b12 + i24 =L= 0;

e62.. -(i13*i25 + i14*i26 + i15*i27 + i16*i28 + i17*i29 + i18*i30 + i19*i31 + 
      i20*i32 + i21*i33 + i22*i34 + i23*i35 + i24*i36) =L= -10;

e63.. -(i13*i37 + i14*i38 + i15*i39 + i16*i40 + i17*i41 + i18*i42 + i19*i43 + 
      i20*i44 + i21*i45 + i22*i46 + i23*i47 + i24*i48) =L= -28;

e64.. -(i13*i49 + i14*i50 + i15*i51 + i16*i52 + i17*i53 + i18*i54 + i19*i55 + 
      i20*i56 + i21*i57 + i22*i58 + i23*i59 + i24*i60) =L= -48;

e65.. -(i13*i61 + i14*i62 + i15*i63 + i16*i64 + i17*i65 + i18*i66 + i19*i67 + 
      i20*i68 + i21*i69 + i22*i70 + i23*i71 + i24*i72) =L= -28;

e66.. -(i13*i73 + i14*i74 + i15*i75 + i16*i76 + i17*i77 + i18*i78 + i19*i79 + 
      i20*i80 + i21*i81 + i22*i82 + i23*i83 + i24*i84) =L= -40;

e67.. -(i13*i85 + i14*i86 + i15*i87 + i16*i88 + i17*i89 + i18*i90 + i19*i91 + 
      i20*i92 + i21*i93 + i22*i94 + i23*i95 + i24*i96) =L= -30;

e68.. -(i13*i97 + i14*i98 + i15*i99 + i16*i100 + i17*i101 + i18*i102 + i19*i103
       + i20*i104 + i21*i105 + i22*i106 + i23*i107 + i24*i108) =L= -21;

e69.. -(i13*i109 + i14*i110 + i15*i111 + i16*i112 + i17*i113 + i18*i114 + i19*
      i115 + i20*i116 + i21*i117 + i22*i118 + i23*i119 + i24*i120) =L= -22;

e70.. -(i13*i121 + i14*i122 + i15*i123 + i16*i124 + i17*i125 + i18*i126 + i19*
      i127 + i20*i128 + i21*i129 + i22*i130 + i23*i131 + i24*i132) =L= -8;

e71.. -(i13*i133 + i14*i134 + i15*i135 + i16*i136 + i17*i137 + i18*i138 + i19*
      i139 + i20*i140 + i21*i141 + i22*i142 + i23*i143 + i24*i144) =L= -8;

e72.. -(i13*i145 + i14*i146 + i15*i147 + i16*i148 + i17*i149 + i18*i150 + i19*
      i151 + i20*i152 + i21*i153 + i22*i154 + i23*i155 + i24*i156) =L= -9;

e73.. -(i13*i157 + i14*i158 + i15*i159 + i16*i160 + i17*i161 + i18*i162 + i19*
      i163 + i20*i164 + i21*i165 + i22*i166 + i23*i167 + i24*i168) =L= -8;

* set non-default bounds
i13.up = 48;
i14.up = 48;
i15.up = 48;
i16.up = 48;
i17.up = 48;
i18.up = 48;
i19.up = 48;
i20.up = 48;
i21.up = 48;
i22.up = 48;
i23.up = 48;
i24.up = 48;
i25.up = 5;
i26.up = 5;
i27.up = 5;
i28.up = 5;
i29.up = 5;
i30.up = 5;
i31.up = 5;
i32.up = 5;
i33.up = 5;
i34.up = 5;
i35.up = 5;
i36.up = 5;
i37.up = 5;
i38.up = 5;
i39.up = 5;
i40.up = 5;
i41.up = 5;
i42.up = 5;
i43.up = 5;
i44.up = 5;
i45.up = 5;
i46.up = 5;
i47.up = 5;
i48.up = 5;
i49.up = 5;
i50.up = 5;
i51.up = 5;
i52.up = 5;
i53.up = 5;
i54.up = 5;
i55.up = 5;
i56.up = 5;
i57.up = 5;
i58.up = 5;
i59.up = 5;
i60.up = 5;
i61.up = 5;
i62.up = 5;
i63.up = 5;
i64.up = 5;
i65.up = 5;
i66.up = 5;
i67.up = 5;
i68.up = 5;
i69.up = 5;
i70.up = 5;
i71.up = 5;
i72.up = 5;
i73.up = 5;
i74.up = 5;
i75.up = 5;
i76.up = 5;
i77.up = 5;
i78.up = 5;
i79.up = 5;
i80.up = 5;
i81.up = 5;
i82.up = 5;
i83.up = 5;
i84.up = 5;
i85.up = 5;
i86.up = 5;
i87.up = 5;
i88.up = 5;
i89.up = 5;
i90.up = 5;
i91.up = 5;
i92.up = 5;
i93.up = 5;
i94.up = 5;
i95.up = 5;
i96.up = 5;
i97.up = 5;
i98.up = 5;
i99.up = 5;
i100.up = 5;
i101.up = 5;
i102.up = 5;
i103.up = 5;
i104.up = 5;
i105.up = 5;
i106.up = 5;
i107.up = 5;
i108.up = 5;
i109.up = 5;
i110.up = 5;
i111.up = 5;
i112.up = 5;
i113.up = 5;
i114.up = 5;
i115.up = 5;
i116.up = 5;
i117.up = 5;
i118.up = 5;
i119.up = 5;
i120.up = 5;
i121.up = 5;
i122.up = 5;
i123.up = 5;
i124.up = 5;
i125.up = 5;
i126.up = 5;
i127.up = 5;
i128.up = 5;
i129.up = 5;
i130.up = 5;
i131.up = 5;
i132.up = 5;
i133.up = 5;
i134.up = 5;
i135.up = 5;
i136.up = 5;
i137.up = 5;
i138.up = 5;
i139.up = 5;
i140.up = 5;
i141.up = 5;
i142.up = 5;
i143.up = 5;
i144.up = 5;
i145.up = 5;
i146.up = 5;
i147.up = 5;
i148.up = 5;
i149.up = 5;
i150.up = 5;
i151.up = 5;
i152.up = 5;
i153.up = 5;
i154.up = 5;
i155.up = 5;
i156.up = 5;
i157.up = 5;
i158.up = 5;
i159.up = 5;
i160.up = 5;
i161.up = 5;
i162.up = 5;
i163.up = 5;
i164.up = 5;
i165.up = 5;
i166.up = 5;
i167.up = 5;
i168.up = 5;

* set non-default levels
i13.l = 1;
i14.l = 1;
i15.l = 1;
i16.l = 1;
i17.l = 1;
i18.l = 1;
i19.l = 1;
i20.l = 1;
i21.l = 1;
i22.l = 1;
i23.l = 1;
i24.l = 1;
i25.l = 1;
i26.l = 1;
i27.l = 1;
i28.l = 1;
i29.l = 1;
i30.l = 1;
i31.l = 1;
i32.l = 1;
i33.l = 1;
i34.l = 1;
i35.l = 1;
i36.l = 1;
i37.l = 1;
i38.l = 1;
i39.l = 1;
i40.l = 1;
i41.l = 1;
i42.l = 1;
i43.l = 1;
i44.l = 1;
i45.l = 1;
i46.l = 1;
i47.l = 1;
i48.l = 1;
i49.l = 1;
i50.l = 1;
i51.l = 1;
i52.l = 1;
i53.l = 1;
i54.l = 1;
i55.l = 1;
i56.l = 1;
i57.l = 1;
i58.l = 1;
i59.l = 1;
i60.l = 1;
i61.l = 1;
i62.l = 1;
i63.l = 1;
i64.l = 1;
i65.l = 1;
i66.l = 1;
i67.l = 1;
i68.l = 1;
i69.l = 1;
i70.l = 1;
i71.l = 1;
i72.l = 1;
i73.l = 1;
i74.l = 1;
i75.l = 1;
i76.l = 1;
i77.l = 1;
i78.l = 1;
i79.l = 1;
i80.l = 1;
i81.l = 1;
i82.l = 1;
i83.l = 1;
i84.l = 1;
i85.l = 1;
i86.l = 1;
i87.l = 1;
i88.l = 1;
i89.l = 1;
i90.l = 1;
i91.l = 1;
i92.l = 1;
i93.l = 1;
i94.l = 1;
i95.l = 1;
i96.l = 1;
i97.l = 1;
i98.l = 1;
i99.l = 1;
i100.l = 1;
i101.l = 1;
i102.l = 1;
i103.l = 1;
i104.l = 1;
i105.l = 1;
i106.l = 1;
i107.l = 1;
i108.l = 1;
i109.l = 1;
i110.l = 1;
i111.l = 1;
i112.l = 1;
i113.l = 1;
i114.l = 1;
i115.l = 1;
i116.l = 1;
i117.l = 1;
i118.l = 1;
i119.l = 1;
i120.l = 1;
i121.l = 1;
i122.l = 1;
i123.l = 1;
i124.l = 1;
i125.l = 1;
i126.l = 1;
i127.l = 1;
i128.l = 1;
i129.l = 1;
i130.l = 1;
i131.l = 1;
i132.l = 1;
i133.l = 1;
i134.l = 1;
i135.l = 1;
i136.l = 1;
i137.l = 1;
i138.l = 1;
i139.l = 1;
i140.l = 1;
i141.l = 1;
i142.l = 1;
i143.l = 1;
i144.l = 1;
i145.l = 1;
i146.l = 1;
i147.l = 1;
i148.l = 1;
i149.l = 1;
i150.l = 1;
i151.l = 1;
i152.l = 1;
i153.l = 1;
i154.l = 1;
i155.l = 1;
i156.l = 1;
i157.l = 1;
i158.l = 1;
i159.l = 1;
i160.l = 1;
i161.l = 1;
i162.l = 1;
i163.l = 1;
i164.l = 1;
i165.l = 1;
i166.l = 1;
i167.l = 1;
i168.l = 1;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2022-08-11 Git hash: f176bd52
Imprint / Privacy Policy / License: CC-BY 4.0