MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance tln12
| Formatsⓘ | ams gms lp mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 87.03674308 (ANTIGONE) 86.90288238 (BARON) 20.60804773 (COUENNE) 87.60000000 (GUROBI) 85.80000000 (LINDO) 87.08756052 (SCIP) 8.30182064 (SHOT) 86.75537032 (XPRESS) |
| Referencesⓘ | Harjunkoski, Iiro, Westerlund, Tapio, Pörn, Ray, and Skrifvars, Hans, Different Transformations for Solving Non-Convex Trim Loss Problems by MINLP, European Journal of Operational Research, 105:3, 1998, 594-603. |
| Sourceⓘ | MacMINLP model trimlon.mod with trimlon12.dat |
| Applicationⓘ | Trim loss minimization problem |
| Added to libraryⓘ | 01 May 2001 |
| Problem typeⓘ | MIQCP |
| #Variablesⓘ | 168 |
| #Binary Variablesⓘ | 12 |
| #Integer Variablesⓘ | 156 |
| #Nonlinear Variablesⓘ | 156 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 156 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 24 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 72 |
| #Linear Constraintsⓘ | 60 |
| #Quadratic Constraintsⓘ | 12 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 768 |
| #Nonlinear Nonzeros in Jacobianⓘ | 288 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 288 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
| #Blocks in Hessian of Lagrangianⓘ | 12 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 13 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 13 |
| Average blocksize in Hessian of Lagrangianⓘ | 13.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e-01 |
| Maximal coefficientⓘ | 1.0600e+03 |
| Infeasibility of initial pointⓘ | 6920 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 73 1 0 72 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 169 1 12 156 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 793 505 288 0
*
* Solve m using MINLP minimizing objvar;
Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,i13,i14,i15,i16,i17,i18,i19
,i20,i21,i22,i23,i24,i25,i26,i27,i28,i29,i30,i31,i32,i33,i34,i35,i36
,i37,i38,i39,i40,i41,i42,i43,i44,i45,i46,i47,i48,i49,i50,i51,i52,i53
,i54,i55,i56,i57,i58,i59,i60,i61,i62,i63,i64,i65,i66,i67,i68,i69,i70
,i71,i72,i73,i74,i75,i76,i77,i78,i79,i80,i81,i82,i83,i84,i85,i86,i87
,i88,i89,i90,i91,i92,i93,i94,i95,i96,i97,i98,i99,i100,i101,i102,i103
,i104,i105,i106,i107,i108,i109,i110,i111,i112,i113,i114,i115,i116
,i117,i118,i119,i120,i121,i122,i123,i124,i125,i126,i127,i128,i129
,i130,i131,i132,i133,i134,i135,i136,i137,i138,i139,i140,i141,i142
,i143,i144,i145,i146,i147,i148,i149,i150,i151,i152,i153,i154,i155
,i156,i157,i158,i159,i160,i161,i162,i163,i164,i165,i166,i167,i168
,objvar;
Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12;
Integer Variables i13,i14,i15,i16,i17,i18,i19,i20,i21,i22,i23,i24,i25,i26,i27
,i28,i29,i30,i31,i32,i33,i34,i35,i36,i37,i38,i39,i40,i41,i42,i43,i44
,i45,i46,i47,i48,i49,i50,i51,i52,i53,i54,i55,i56,i57,i58,i59,i60,i61
,i62,i63,i64,i65,i66,i67,i68,i69,i70,i71,i72,i73,i74,i75,i76,i77,i78
,i79,i80,i81,i82,i83,i84,i85,i86,i87,i88,i89,i90,i91,i92,i93,i94,i95
,i96,i97,i98,i99,i100,i101,i102,i103,i104,i105,i106,i107,i108,i109
,i110,i111,i112,i113,i114,i115,i116,i117,i118,i119,i120,i121,i122
,i123,i124,i125,i126,i127,i128,i129,i130,i131,i132,i133,i134,i135
,i136,i137,i138,i139,i140,i141,i142,i143,i144,i145,i146,i147,i148
,i149,i150,i151,i152,i153,i154,i155,i156,i157,i158,i159,i160,i161
,i162,i163,i164,i165,i166,i167,i168;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
,e71,e72,e73;
e1.. - 0.1*b1 - 0.2*b2 - 0.3*b3 - 0.4*b4 - 0.5*b5 - 0.6*b6 - 0.7*b7 - 0.8*b8
- 0.9*b9 - b10 - 1.1*b11 - 1.2*b12 - i13 - i14 - i15 - i16 - i17 - i18
- i19 - i20 - i21 - i22 - i23 - i24 + objvar =E= 0;
e2.. 350*i25 + 450*i37 + 550*i49 + 650*i61 + 700*i73 + 740*i85 + 800*i97
+ 840*i109 + 910*i121 + 960*i133 + 1010*i145 + 1060*i157 =L= 2100;
e3.. 350*i26 + 450*i38 + 550*i50 + 650*i62 + 700*i74 + 740*i86 + 800*i98
+ 840*i110 + 910*i122 + 960*i134 + 1010*i146 + 1060*i158 =L= 2100;
e4.. 350*i27 + 450*i39 + 550*i51 + 650*i63 + 700*i75 + 740*i87 + 800*i99
+ 840*i111 + 910*i123 + 960*i135 + 1010*i147 + 1060*i159 =L= 2100;
e5.. 350*i28 + 450*i40 + 550*i52 + 650*i64 + 700*i76 + 740*i88 + 800*i100
+ 840*i112 + 910*i124 + 960*i136 + 1010*i148 + 1060*i160 =L= 2100;
e6.. 350*i29 + 450*i41 + 550*i53 + 650*i65 + 700*i77 + 740*i89 + 800*i101
+ 840*i113 + 910*i125 + 960*i137 + 1010*i149 + 1060*i161 =L= 2100;
e7.. 350*i30 + 450*i42 + 550*i54 + 650*i66 + 700*i78 + 740*i90 + 800*i102
+ 840*i114 + 910*i126 + 960*i138 + 1010*i150 + 1060*i162 =L= 2100;
e8.. 350*i31 + 450*i43 + 550*i55 + 650*i67 + 700*i79 + 740*i91 + 800*i103
+ 840*i115 + 910*i127 + 960*i139 + 1010*i151 + 1060*i163 =L= 2100;
e9.. 350*i32 + 450*i44 + 550*i56 + 650*i68 + 700*i80 + 740*i92 + 800*i104
+ 840*i116 + 910*i128 + 960*i140 + 1010*i152 + 1060*i164 =L= 2100;
e10.. 350*i33 + 450*i45 + 550*i57 + 650*i69 + 700*i81 + 740*i93 + 800*i105
+ 840*i117 + 910*i129 + 960*i141 + 1010*i153 + 1060*i165 =L= 2100;
e11.. 350*i34 + 450*i46 + 550*i58 + 650*i70 + 700*i82 + 740*i94 + 800*i106
+ 840*i118 + 910*i130 + 960*i142 + 1010*i154 + 1060*i166 =L= 2100;
e12.. 350*i35 + 450*i47 + 550*i59 + 650*i71 + 700*i83 + 740*i95 + 800*i107
+ 840*i119 + 910*i131 + 960*i143 + 1010*i155 + 1060*i167 =L= 2100;
e13.. 350*i36 + 450*i48 + 550*i60 + 650*i72 + 700*i84 + 740*i96 + 800*i108
+ 840*i120 + 910*i132 + 960*i144 + 1010*i156 + 1060*i168 =L= 2100;
e14.. - 350*i25 - 450*i37 - 550*i49 - 650*i61 - 700*i73 - 740*i85 - 800*i97
- 840*i109 - 910*i121 - 960*i133 - 1010*i145 - 1060*i157 =L= -2000;
e15.. - 350*i26 - 450*i38 - 550*i50 - 650*i62 - 700*i74 - 740*i86 - 800*i98
- 840*i110 - 910*i122 - 960*i134 - 1010*i146 - 1060*i158 =L= -2000;
e16.. - 350*i27 - 450*i39 - 550*i51 - 650*i63 - 700*i75 - 740*i87 - 800*i99
- 840*i111 - 910*i123 - 960*i135 - 1010*i147 - 1060*i159 =L= -2000;
e17.. - 350*i28 - 450*i40 - 550*i52 - 650*i64 - 700*i76 - 740*i88 - 800*i100
- 840*i112 - 910*i124 - 960*i136 - 1010*i148 - 1060*i160 =L= -2000;
e18.. - 350*i29 - 450*i41 - 550*i53 - 650*i65 - 700*i77 - 740*i89 - 800*i101
- 840*i113 - 910*i125 - 960*i137 - 1010*i149 - 1060*i161 =L= -2000;
e19.. - 350*i30 - 450*i42 - 550*i54 - 650*i66 - 700*i78 - 740*i90 - 800*i102
- 840*i114 - 910*i126 - 960*i138 - 1010*i150 - 1060*i162 =L= -2000;
e20.. - 350*i31 - 450*i43 - 550*i55 - 650*i67 - 700*i79 - 740*i91 - 800*i103
- 840*i115 - 910*i127 - 960*i139 - 1010*i151 - 1060*i163 =L= -2000;
e21.. - 350*i32 - 450*i44 - 550*i56 - 650*i68 - 700*i80 - 740*i92 - 800*i104
- 840*i116 - 910*i128 - 960*i140 - 1010*i152 - 1060*i164 =L= -2000;
e22.. - 350*i33 - 450*i45 - 550*i57 - 650*i69 - 700*i81 - 740*i93 - 800*i105
- 840*i117 - 910*i129 - 960*i141 - 1010*i153 - 1060*i165 =L= -2000;
e23.. - 350*i34 - 450*i46 - 550*i58 - 650*i70 - 700*i82 - 740*i94 - 800*i106
- 840*i118 - 910*i130 - 960*i142 - 1010*i154 - 1060*i166 =L= -2000;
e24.. - 350*i35 - 450*i47 - 550*i59 - 650*i71 - 700*i83 - 740*i95 - 800*i107
- 840*i119 - 910*i131 - 960*i143 - 1010*i155 - 1060*i167 =L= -2000;
e25.. - 350*i36 - 450*i48 - 550*i60 - 650*i72 - 700*i84 - 740*i96 - 800*i108
- 840*i120 - 910*i132 - 960*i144 - 1010*i156 - 1060*i168 =L= -2000;
e26.. i25 + i37 + i49 + i61 + i73 + i85 + i97 + i109 + i121 + i133 + i145
+ i157 =L= 5;
e27.. i26 + i38 + i50 + i62 + i74 + i86 + i98 + i110 + i122 + i134 + i146
+ i158 =L= 5;
e28.. i27 + i39 + i51 + i63 + i75 + i87 + i99 + i111 + i123 + i135 + i147
+ i159 =L= 5;
e29.. i28 + i40 + i52 + i64 + i76 + i88 + i100 + i112 + i124 + i136 + i148
+ i160 =L= 5;
e30.. i29 + i41 + i53 + i65 + i77 + i89 + i101 + i113 + i125 + i137 + i149
+ i161 =L= 5;
e31.. i30 + i42 + i54 + i66 + i78 + i90 + i102 + i114 + i126 + i138 + i150
+ i162 =L= 5;
e32.. i31 + i43 + i55 + i67 + i79 + i91 + i103 + i115 + i127 + i139 + i151
+ i163 =L= 5;
e33.. i32 + i44 + i56 + i68 + i80 + i92 + i104 + i116 + i128 + i140 + i152
+ i164 =L= 5;
e34.. i33 + i45 + i57 + i69 + i81 + i93 + i105 + i117 + i129 + i141 + i153
+ i165 =L= 5;
e35.. i34 + i46 + i58 + i70 + i82 + i94 + i106 + i118 + i130 + i142 + i154
+ i166 =L= 5;
e36.. i35 + i47 + i59 + i71 + i83 + i95 + i107 + i119 + i131 + i143 + i155
+ i167 =L= 5;
e37.. i36 + i48 + i60 + i72 + i84 + i96 + i108 + i120 + i132 + i144 + i156
+ i168 =L= 5;
e38.. b1 - i13 =L= 0;
e39.. b2 - i14 =L= 0;
e40.. b3 - i15 =L= 0;
e41.. b4 - i16 =L= 0;
e42.. b5 - i17 =L= 0;
e43.. b6 - i18 =L= 0;
e44.. b7 - i19 =L= 0;
e45.. b8 - i20 =L= 0;
e46.. b9 - i21 =L= 0;
e47.. b10 - i22 =L= 0;
e48.. b11 - i23 =L= 0;
e49.. b12 - i24 =L= 0;
e50.. - 48*b1 + i13 =L= 0;
e51.. - 48*b2 + i14 =L= 0;
e52.. - 48*b3 + i15 =L= 0;
e53.. - 48*b4 + i16 =L= 0;
e54.. - 48*b5 + i17 =L= 0;
e55.. - 48*b6 + i18 =L= 0;
e56.. - 48*b7 + i19 =L= 0;
e57.. - 48*b8 + i20 =L= 0;
e58.. - 48*b9 + i21 =L= 0;
e59.. - 48*b10 + i22 =L= 0;
e60.. - 48*b11 + i23 =L= 0;
e61.. - 48*b12 + i24 =L= 0;
e62.. -(i13*i25 + i14*i26 + i15*i27 + i16*i28 + i17*i29 + i18*i30 + i19*i31 +
i20*i32 + i21*i33 + i22*i34 + i23*i35 + i24*i36) =L= -10;
e63.. -(i13*i37 + i14*i38 + i15*i39 + i16*i40 + i17*i41 + i18*i42 + i19*i43 +
i20*i44 + i21*i45 + i22*i46 + i23*i47 + i24*i48) =L= -28;
e64.. -(i13*i49 + i14*i50 + i15*i51 + i16*i52 + i17*i53 + i18*i54 + i19*i55 +
i20*i56 + i21*i57 + i22*i58 + i23*i59 + i24*i60) =L= -48;
e65.. -(i13*i61 + i14*i62 + i15*i63 + i16*i64 + i17*i65 + i18*i66 + i19*i67 +
i20*i68 + i21*i69 + i22*i70 + i23*i71 + i24*i72) =L= -28;
e66.. -(i13*i73 + i14*i74 + i15*i75 + i16*i76 + i17*i77 + i18*i78 + i19*i79 +
i20*i80 + i21*i81 + i22*i82 + i23*i83 + i24*i84) =L= -40;
e67.. -(i13*i85 + i14*i86 + i15*i87 + i16*i88 + i17*i89 + i18*i90 + i19*i91 +
i20*i92 + i21*i93 + i22*i94 + i23*i95 + i24*i96) =L= -30;
e68.. -(i13*i97 + i14*i98 + i15*i99 + i16*i100 + i17*i101 + i18*i102 + i19*i103
+ i20*i104 + i21*i105 + i22*i106 + i23*i107 + i24*i108) =L= -21;
e69.. -(i13*i109 + i14*i110 + i15*i111 + i16*i112 + i17*i113 + i18*i114 + i19*
i115 + i20*i116 + i21*i117 + i22*i118 + i23*i119 + i24*i120) =L= -22;
e70.. -(i13*i121 + i14*i122 + i15*i123 + i16*i124 + i17*i125 + i18*i126 + i19*
i127 + i20*i128 + i21*i129 + i22*i130 + i23*i131 + i24*i132) =L= -8;
e71.. -(i13*i133 + i14*i134 + i15*i135 + i16*i136 + i17*i137 + i18*i138 + i19*
i139 + i20*i140 + i21*i141 + i22*i142 + i23*i143 + i24*i144) =L= -8;
e72.. -(i13*i145 + i14*i146 + i15*i147 + i16*i148 + i17*i149 + i18*i150 + i19*
i151 + i20*i152 + i21*i153 + i22*i154 + i23*i155 + i24*i156) =L= -9;
e73.. -(i13*i157 + i14*i158 + i15*i159 + i16*i160 + i17*i161 + i18*i162 + i19*
i163 + i20*i164 + i21*i165 + i22*i166 + i23*i167 + i24*i168) =L= -8;
* set non-default bounds
i13.up = 48;
i14.up = 48;
i15.up = 48;
i16.up = 48;
i17.up = 48;
i18.up = 48;
i19.up = 48;
i20.up = 48;
i21.up = 48;
i22.up = 48;
i23.up = 48;
i24.up = 48;
i25.up = 5;
i26.up = 5;
i27.up = 5;
i28.up = 5;
i29.up = 5;
i30.up = 5;
i31.up = 5;
i32.up = 5;
i33.up = 5;
i34.up = 5;
i35.up = 5;
i36.up = 5;
i37.up = 5;
i38.up = 5;
i39.up = 5;
i40.up = 5;
i41.up = 5;
i42.up = 5;
i43.up = 5;
i44.up = 5;
i45.up = 5;
i46.up = 5;
i47.up = 5;
i48.up = 5;
i49.up = 5;
i50.up = 5;
i51.up = 5;
i52.up = 5;
i53.up = 5;
i54.up = 5;
i55.up = 5;
i56.up = 5;
i57.up = 5;
i58.up = 5;
i59.up = 5;
i60.up = 5;
i61.up = 5;
i62.up = 5;
i63.up = 5;
i64.up = 5;
i65.up = 5;
i66.up = 5;
i67.up = 5;
i68.up = 5;
i69.up = 5;
i70.up = 5;
i71.up = 5;
i72.up = 5;
i73.up = 5;
i74.up = 5;
i75.up = 5;
i76.up = 5;
i77.up = 5;
i78.up = 5;
i79.up = 5;
i80.up = 5;
i81.up = 5;
i82.up = 5;
i83.up = 5;
i84.up = 5;
i85.up = 5;
i86.up = 5;
i87.up = 5;
i88.up = 5;
i89.up = 5;
i90.up = 5;
i91.up = 5;
i92.up = 5;
i93.up = 5;
i94.up = 5;
i95.up = 5;
i96.up = 5;
i97.up = 5;
i98.up = 5;
i99.up = 5;
i100.up = 5;
i101.up = 5;
i102.up = 5;
i103.up = 5;
i104.up = 5;
i105.up = 5;
i106.up = 5;
i107.up = 5;
i108.up = 5;
i109.up = 5;
i110.up = 5;
i111.up = 5;
i112.up = 5;
i113.up = 5;
i114.up = 5;
i115.up = 5;
i116.up = 5;
i117.up = 5;
i118.up = 5;
i119.up = 5;
i120.up = 5;
i121.up = 5;
i122.up = 5;
i123.up = 5;
i124.up = 5;
i125.up = 5;
i126.up = 5;
i127.up = 5;
i128.up = 5;
i129.up = 5;
i130.up = 5;
i131.up = 5;
i132.up = 5;
i133.up = 5;
i134.up = 5;
i135.up = 5;
i136.up = 5;
i137.up = 5;
i138.up = 5;
i139.up = 5;
i140.up = 5;
i141.up = 5;
i142.up = 5;
i143.up = 5;
i144.up = 5;
i145.up = 5;
i146.up = 5;
i147.up = 5;
i148.up = 5;
i149.up = 5;
i150.up = 5;
i151.up = 5;
i152.up = 5;
i153.up = 5;
i154.up = 5;
i155.up = 5;
i156.up = 5;
i157.up = 5;
i158.up = 5;
i159.up = 5;
i160.up = 5;
i161.up = 5;
i162.up = 5;
i163.up = 5;
i164.up = 5;
i165.up = 5;
i166.up = 5;
i167.up = 5;
i168.up = 5;
* set non-default levels
i13.l = 1;
i14.l = 1;
i15.l = 1;
i16.l = 1;
i17.l = 1;
i18.l = 1;
i19.l = 1;
i20.l = 1;
i21.l = 1;
i22.l = 1;
i23.l = 1;
i24.l = 1;
i25.l = 1;
i26.l = 1;
i27.l = 1;
i28.l = 1;
i29.l = 1;
i30.l = 1;
i31.l = 1;
i32.l = 1;
i33.l = 1;
i34.l = 1;
i35.l = 1;
i36.l = 1;
i37.l = 1;
i38.l = 1;
i39.l = 1;
i40.l = 1;
i41.l = 1;
i42.l = 1;
i43.l = 1;
i44.l = 1;
i45.l = 1;
i46.l = 1;
i47.l = 1;
i48.l = 1;
i49.l = 1;
i50.l = 1;
i51.l = 1;
i52.l = 1;
i53.l = 1;
i54.l = 1;
i55.l = 1;
i56.l = 1;
i57.l = 1;
i58.l = 1;
i59.l = 1;
i60.l = 1;
i61.l = 1;
i62.l = 1;
i63.l = 1;
i64.l = 1;
i65.l = 1;
i66.l = 1;
i67.l = 1;
i68.l = 1;
i69.l = 1;
i70.l = 1;
i71.l = 1;
i72.l = 1;
i73.l = 1;
i74.l = 1;
i75.l = 1;
i76.l = 1;
i77.l = 1;
i78.l = 1;
i79.l = 1;
i80.l = 1;
i81.l = 1;
i82.l = 1;
i83.l = 1;
i84.l = 1;
i85.l = 1;
i86.l = 1;
i87.l = 1;
i88.l = 1;
i89.l = 1;
i90.l = 1;
i91.l = 1;
i92.l = 1;
i93.l = 1;
i94.l = 1;
i95.l = 1;
i96.l = 1;
i97.l = 1;
i98.l = 1;
i99.l = 1;
i100.l = 1;
i101.l = 1;
i102.l = 1;
i103.l = 1;
i104.l = 1;
i105.l = 1;
i106.l = 1;
i107.l = 1;
i108.l = 1;
i109.l = 1;
i110.l = 1;
i111.l = 1;
i112.l = 1;
i113.l = 1;
i114.l = 1;
i115.l = 1;
i116.l = 1;
i117.l = 1;
i118.l = 1;
i119.l = 1;
i120.l = 1;
i121.l = 1;
i122.l = 1;
i123.l = 1;
i124.l = 1;
i125.l = 1;
i126.l = 1;
i127.l = 1;
i128.l = 1;
i129.l = 1;
i130.l = 1;
i131.l = 1;
i132.l = 1;
i133.l = 1;
i134.l = 1;
i135.l = 1;
i136.l = 1;
i137.l = 1;
i138.l = 1;
i139.l = 1;
i140.l = 1;
i141.l = 1;
i142.l = 1;
i143.l = 1;
i144.l = 1;
i145.l = 1;
i146.l = 1;
i147.l = 1;
i148.l = 1;
i149.l = 1;
i150.l = 1;
i151.l = 1;
i152.l = 1;
i153.l = 1;
i154.l = 1;
i155.l = 1;
i156.l = 1;
i157.l = 1;
i158.l = 1;
i159.l = 1;
i160.l = 1;
i161.l = 1;
i162.l = 1;
i163.l = 1;
i164.l = 1;
i165.l = 1;
i166.l = 1;
i167.l = 1;
i168.l = 1;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

