MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance tls6
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 7.20000000 (ALPHAECP) 9.92916231 (ANTIGONE) 11.20000000 (BARON) 7.48599040 (BONMIN) 1.14218512 (COUENNE) 15.30000000 (GUROBI) 5.49616714 (LINDO) 10.34622077 (SCIP) 10.58219716 (SHOT) 11.20000000 (XPRESS) |
| Referencesⓘ | Harjunkoski, Iiro, Westerlund, Tapio, Pörn, Ray, and Skrifvars, Hans, Different Transformations for Solving Non-Convex Trim Loss Problems by MINLP, European Journal of Operational Research, 105:3, 1998, 594-603. |
| Sourceⓘ | MacMINLP model trimlon.mod with trimloss2.dat |
| Applicationⓘ | Trim loss minimization problem |
| Added to libraryⓘ | 01 May 2001 |
| Problem typeⓘ | MINLP |
| #Variablesⓘ | 215 |
| #Binary Variablesⓘ | 173 |
| #Integer Variablesⓘ | 6 |
| #Nonlinear Variablesⓘ | 42 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 6 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 53 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 120 |
| #Linear Constraintsⓘ | 114 |
| #Quadratic Constraintsⓘ | 0 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 6 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | convex |
| #Nonzeros in Jacobianⓘ | 1316 |
| #Nonlinear Nonzeros in Jacobianⓘ | 72 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 114 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 42 |
| #Blocks in Hessian of Lagrangianⓘ | 6 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 7 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 7 |
| Average blocksize in Hessian of Lagrangianⓘ | 7.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.0000e-01 |
| Maximal coefficientⓘ | 2.1500e+03 |
| Infeasibility of initial pointⓘ | 2100 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 121 43 0 78 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 216 37 173 6 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 1370 1298 72 0
*
* Solve m using MINLP minimizing objvar;
Variables b1,b2,b3,b4,b5,b6,i7,i8,i9,i10,i11,i12,x13,x14,x15,x16,x17,x18,x19
,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,b49,b50,b51,b52,b53
,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70
,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87
,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103
,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116
,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,b129
,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141,b142
,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154,b155
,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167,b168
,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180,b181
,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193,b194
,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205,b206,b207
,b208,b209,b210,b211,b212,b213,b214,b215,objvar;
Binary Variables b1,b2,b3,b4,b5,b6,b49,b50,b51,b52,b53,b54,b55,b56,b57,b58
,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70,b71,b72,b73,b74,b75
,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87,b88,b89,b90,b91,b92
,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103,b104,b105,b106,b107
,b108,b109,b110,b111,b112,b113,b114,b115,b116,b117,b118,b119,b120
,b121,b122,b123,b124,b125,b126,b127,b128,b129,b130,b131,b132,b133
,b134,b135,b136,b137,b138,b139,b140,b141,b142,b143,b144,b145,b146
,b147,b148,b149,b150,b151,b152,b153,b154,b155,b156,b157,b158,b159
,b160,b161,b162,b163,b164,b165,b166,b167,b168,b169,b170,b171,b172
,b173,b174,b175,b176,b177,b178,b179,b180,b181,b182,b183,b184,b185
,b186,b187,b188,b189,b190,b191,b192,b193,b194,b195,b196,b197,b198
,b199,b200,b201,b202,b203,b204,b205,b206,b207,b208,b209,b210,b211
,b212,b213,b214,b215;
Integer Variables i7,i8,i9,i10,i11,i12;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
,e117,e118,e119,e120,e121;
e1.. - 0.1*b1 - 0.2*b2 - 0.3*b3 - 0.4*b4 - 0.5*b5 - 0.6*b6 - b49 - 2*b50
- 3*b51 - 4*b52 - 5*b53 - 6*b54 - 7*b55 - 8*b56 - 9*b57 - 10*b58 - 11*b59
- 12*b60 - 13*b61 - 14*b62 - b63 - 2*b64 - 3*b65 - 4*b66 - 5*b67 - 6*b68
- 7*b69 - 8*b70 - 9*b71 - 10*b72 - 11*b73 - 12*b74 - b75 - 2*b76 - 3*b77
- 4*b78 - 5*b79 - 6*b80 - 7*b81 - 8*b82 - b83 - 2*b84 - 3*b85 - 4*b86
- 5*b87 - 6*b88 - 7*b89 - b90 - 2*b91 - 3*b92 - 4*b93 - b94 - 2*b95
+ objvar =E= 0;
e2.. 330*b96 + 660*b97 + 360*b108 + 720*b109 + 1080*b110 + 380*b126
+ 760*b127 + 1140*b128 + 430*b144 + 860*b145 + 1290*b146 + 1720*b147
+ 2150*b148 + 490*b174 + 980*b175 + 1470*b176 + 530*b192 + 1060*b193
+ 1590*b194 + 2120*b195 =L= 2200;
e3.. 330*b98 + 660*b99 + 360*b111 + 720*b112 + 1080*b113 + 380*b129
+ 760*b130 + 1140*b131 + 430*b149 + 860*b150 + 1290*b151 + 1720*b152
+ 2150*b153 + 490*b177 + 980*b178 + 1470*b179 + 530*b196 + 1060*b197
+ 1590*b198 + 2120*b199 =L= 2200;
e4.. 330*b100 + 660*b101 + 360*b114 + 720*b115 + 1080*b116 + 380*b132
+ 760*b133 + 1140*b134 + 430*b154 + 860*b155 + 1290*b156 + 1720*b157
+ 2150*b158 + 490*b180 + 980*b181 + 1470*b182 + 530*b200 + 1060*b201
+ 1590*b202 + 2120*b203 =L= 2200;
e5.. 330*b102 + 660*b103 + 360*b117 + 720*b118 + 1080*b119 + 380*b135
+ 760*b136 + 1140*b137 + 430*b159 + 860*b160 + 1290*b161 + 1720*b162
+ 2150*b163 + 490*b183 + 980*b184 + 1470*b185 + 530*b204 + 1060*b205
+ 1590*b206 + 2120*b207 =L= 2200;
e6.. 330*b104 + 660*b105 + 360*b120 + 720*b121 + 1080*b122 + 380*b138
+ 760*b139 + 1140*b140 + 430*b164 + 860*b165 + 1290*b166 + 1720*b167
+ 2150*b168 + 490*b186 + 980*b187 + 1470*b188 + 530*b208 + 1060*b209
+ 1590*b210 + 2120*b211 =L= 2200;
e7.. 330*b106 + 660*b107 + 360*b123 + 720*b124 + 1080*b125 + 380*b141
+ 760*b142 + 1140*b143 + 430*b169 + 860*b170 + 1290*b171 + 1720*b172
+ 2150*b173 + 490*b189 + 980*b190 + 1470*b191 + 530*b212 + 1060*b213
+ 1590*b214 + 2120*b215 =L= 2200;
e8.. - 330*b96 - 660*b97 - 360*b108 - 720*b109 - 1080*b110 - 380*b126
- 760*b127 - 1140*b128 - 430*b144 - 860*b145 - 1290*b146 - 1720*b147
- 2150*b148 - 490*b174 - 980*b175 - 1470*b176 - 530*b192 - 1060*b193
- 1590*b194 - 2120*b195 =L= -2100;
e9.. - 330*b98 - 660*b99 - 360*b111 - 720*b112 - 1080*b113 - 380*b129
- 760*b130 - 1140*b131 - 430*b149 - 860*b150 - 1290*b151 - 1720*b152
- 2150*b153 - 490*b177 - 980*b178 - 1470*b179 - 530*b196 - 1060*b197
- 1590*b198 - 2120*b199 =L= -2100;
e10.. - 330*b100 - 660*b101 - 360*b114 - 720*b115 - 1080*b116 - 380*b132
- 760*b133 - 1140*b134 - 430*b154 - 860*b155 - 1290*b156 - 1720*b157
- 2150*b158 - 490*b180 - 980*b181 - 1470*b182 - 530*b200 - 1060*b201
- 1590*b202 - 2120*b203 =L= -2100;
e11.. - 330*b102 - 660*b103 - 360*b117 - 720*b118 - 1080*b119 - 380*b135
- 760*b136 - 1140*b137 - 430*b159 - 860*b160 - 1290*b161 - 1720*b162
- 2150*b163 - 490*b183 - 980*b184 - 1470*b185 - 530*b204 - 1060*b205
- 1590*b206 - 2120*b207 =L= -2100;
e12.. - 330*b104 - 660*b105 - 360*b120 - 720*b121 - 1080*b122 - 380*b138
- 760*b139 - 1140*b140 - 430*b164 - 860*b165 - 1290*b166 - 1720*b167
- 2150*b168 - 490*b186 - 980*b187 - 1470*b188 - 530*b208 - 1060*b209
- 1590*b210 - 2120*b211 =L= -2100;
e13.. - 330*b106 - 660*b107 - 360*b123 - 720*b124 - 1080*b125 - 380*b141
- 760*b142 - 1140*b143 - 430*b169 - 860*b170 - 1290*b171 - 1720*b172
- 2150*b173 - 490*b189 - 980*b190 - 1470*b191 - 530*b212 - 1060*b213
- 1590*b214 - 2120*b215 =L= -2100;
e14.. b96 + 2*b97 + b108 + 2*b109 + 3*b110 + b126 + 2*b127 + 3*b128 + b144
+ 2*b145 + 3*b146 + 4*b147 + 5*b148 + b174 + 2*b175 + 3*b176 + b192
+ 2*b193 + 3*b194 + 4*b195 =L= 5;
e15.. b98 + 2*b99 + b111 + 2*b112 + 3*b113 + b129 + 2*b130 + 3*b131 + b149
+ 2*b150 + 3*b151 + 4*b152 + 5*b153 + b177 + 2*b178 + 3*b179 + b196
+ 2*b197 + 3*b198 + 4*b199 =L= 5;
e16.. b100 + 2*b101 + b114 + 2*b115 + 3*b116 + b132 + 2*b133 + 3*b134 + b154
+ 2*b155 + 3*b156 + 4*b157 + 5*b158 + b180 + 2*b181 + 3*b182 + b200
+ 2*b201 + 3*b202 + 4*b203 =L= 5;
e17.. b102 + 2*b103 + b117 + 2*b118 + 3*b119 + b135 + 2*b136 + 3*b137 + b159
+ 2*b160 + 3*b161 + 4*b162 + 5*b163 + b183 + 2*b184 + 3*b185 + b204
+ 2*b205 + 3*b206 + 4*b207 =L= 5;
e18.. b104 + 2*b105 + b120 + 2*b121 + 3*b122 + b138 + 2*b139 + 3*b140 + b164
+ 2*b165 + 3*b166 + 4*b167 + 5*b168 + b186 + 2*b187 + 3*b188 + b208
+ 2*b209 + 3*b210 + 4*b211 =L= 5;
e19.. b106 + 2*b107 + b123 + 2*b124 + 3*b125 + b141 + 2*b142 + 3*b143 + b169
+ 2*b170 + 3*b171 + 4*b172 + 5*b173 + b189 + 2*b190 + 3*b191 + b212
+ 2*b213 + 3*b214 + 4*b215 =L= 5;
e20.. b1 - b49 - 2*b50 - 3*b51 - 4*b52 - 5*b53 - 6*b54 - 7*b55 - 8*b56
- 9*b57 - 10*b58 - 11*b59 - 12*b60 - 13*b61 - 14*b62 =L= 0;
e21.. b2 - b63 - 2*b64 - 3*b65 - 4*b66 - 5*b67 - 6*b68 - 7*b69 - 8*b70
- 9*b71 - 10*b72 - 11*b73 - 12*b74 =L= 0;
e22.. b3 - b75 - 2*b76 - 3*b77 - 4*b78 - 5*b79 - 6*b80 - 7*b81 - 8*b82 =L= 0
;
e23.. b4 - b83 - 2*b84 - 3*b85 - 4*b86 - 5*b87 - 6*b88 - 7*b89 =L= 0;
e24.. b5 - b90 - 2*b91 - 3*b92 - 4*b93 =L= 0;
e25.. b6 - b94 - 2*b95 =L= 0;
e26.. - 14*b1 + b49 + 2*b50 + 3*b51 + 4*b52 + 5*b53 + 6*b54 + 7*b55 + 8*b56
+ 9*b57 + 10*b58 + 11*b59 + 12*b60 + 13*b61 + 14*b62 =L= 0;
e27.. - 12*b2 + b63 + 2*b64 + 3*b65 + 4*b66 + 5*b67 + 6*b68 + 7*b69 + 8*b70
+ 9*b71 + 10*b72 + 11*b73 + 12*b74 =L= 0;
e28.. - 8*b3 + b75 + 2*b76 + 3*b77 + 4*b78 + 5*b79 + 6*b80 + 7*b81 + 8*b82
=L= 0;
e29.. - 7*b4 + b83 + 2*b84 + 3*b85 + 4*b86 + 5*b87 + 6*b88 + 7*b89 =L= 0;
e30.. - 4*b5 + b90 + 2*b91 + 3*b92 + 4*b93 =L= 0;
e31.. - 2*b6 + b94 + 2*b95 =L= 0;
e32.. i7 - 3*b49 - 8*b50 - 15*b51 - 24*b52 - 35*b53 - 48*b54 - 63*b55
- 80*b56 - 99*b57 - 120*b58 - 143*b59 - 168*b60 - 195*b61 - 224*b62
=E= 1;
e33.. i8 - 3*b63 - 8*b64 - 15*b65 - 24*b66 - 35*b67 - 48*b68 - 63*b69
- 80*b70 - 99*b71 - 120*b72 - 143*b73 - 168*b74 =E= 1;
e34.. i9 - 3*b75 - 8*b76 - 15*b77 - 24*b78 - 35*b79 - 48*b80 - 63*b81
- 80*b82 =E= 1;
e35.. i10 - 3*b83 - 8*b84 - 15*b85 - 24*b86 - 35*b87 - 48*b88 - 63*b89 =E= 1
;
e36.. i11 - 3*b90 - 8*b91 - 15*b92 - 24*b93 =E= 1;
e37.. i12 - 3*b94 - 8*b95 =E= 1;
e38.. b49 + b50 + b51 + b52 + b53 + b54 + b55 + b56 + b57 + b58 + b59 + b60
+ b61 + b62 =L= 1;
e39.. b63 + b64 + b65 + b66 + b67 + b68 + b69 + b70 + b71 + b72 + b73 + b74
=L= 1;
e40.. b75 + b76 + b77 + b78 + b79 + b80 + b81 + b82 =L= 1;
e41.. b83 + b84 + b85 + b86 + b87 + b88 + b89 =L= 1;
e42.. b90 + b91 + b92 + b93 =L= 1;
e43.. b94 + b95 =L= 1;
e44.. x13 - 3*b96 - 8*b97 =E= 1;
e45.. x14 - 3*b98 - 8*b99 =E= 1;
e46.. x15 - 3*b100 - 8*b101 =E= 1;
e47.. x16 - 3*b102 - 8*b103 =E= 1;
e48.. x17 - 3*b104 - 8*b105 =E= 1;
e49.. x18 - 3*b106 - 8*b107 =E= 1;
e50.. x19 - 3*b108 - 8*b109 - 15*b110 =E= 1;
e51.. x20 - 3*b111 - 8*b112 - 15*b113 =E= 1;
e52.. x21 - 3*b114 - 8*b115 - 15*b116 =E= 1;
e53.. x22 - 3*b117 - 8*b118 - 15*b119 =E= 1;
e54.. x23 - 3*b120 - 8*b121 - 15*b122 =E= 1;
e55.. x24 - 3*b123 - 8*b124 - 15*b125 =E= 1;
e56.. x25 - 3*b126 - 8*b127 - 15*b128 =E= 1;
e57.. x26 - 3*b129 - 8*b130 - 15*b131 =E= 1;
e58.. x27 - 3*b132 - 8*b133 - 15*b134 =E= 1;
e59.. x28 - 3*b135 - 8*b136 - 15*b137 =E= 1;
e60.. x29 - 3*b138 - 8*b139 - 15*b140 =E= 1;
e61.. x30 - 3*b141 - 8*b142 - 15*b143 =E= 1;
e62.. x31 - 3*b144 - 8*b145 - 15*b146 - 24*b147 - 35*b148 =E= 1;
e63.. x32 - 3*b149 - 8*b150 - 15*b151 - 24*b152 - 35*b153 =E= 1;
e64.. x33 - 3*b154 - 8*b155 - 15*b156 - 24*b157 - 35*b158 =E= 1;
e65.. x34 - 3*b159 - 8*b160 - 15*b161 - 24*b162 - 35*b163 =E= 1;
e66.. x35 - 3*b164 - 8*b165 - 15*b166 - 24*b167 - 35*b168 =E= 1;
e67.. x36 - 3*b169 - 8*b170 - 15*b171 - 24*b172 - 35*b173 =E= 1;
e68.. x37 - 3*b174 - 8*b175 - 15*b176 =E= 1;
e69.. x38 - 3*b177 - 8*b178 - 15*b179 =E= 1;
e70.. x39 - 3*b180 - 8*b181 - 15*b182 =E= 1;
e71.. x40 - 3*b183 - 8*b184 - 15*b185 =E= 1;
e72.. x41 - 3*b186 - 8*b187 - 15*b188 =E= 1;
e73.. x42 - 3*b189 - 8*b190 - 15*b191 =E= 1;
e74.. x43 - 3*b192 - 8*b193 - 15*b194 - 24*b195 =E= 1;
e75.. x44 - 3*b196 - 8*b197 - 15*b198 - 24*b199 =E= 1;
e76.. x45 - 3*b200 - 8*b201 - 15*b202 - 24*b203 =E= 1;
e77.. x46 - 3*b204 - 8*b205 - 15*b206 - 24*b207 =E= 1;
e78.. x47 - 3*b208 - 8*b209 - 15*b210 - 24*b211 =E= 1;
e79.. x48 - 3*b212 - 8*b213 - 15*b214 - 24*b215 =E= 1;
e80.. b96 + b97 =L= 1;
e81.. b98 + b99 =L= 1;
e82.. b100 + b101 =L= 1;
e83.. b102 + b103 =L= 1;
e84.. b104 + b105 =L= 1;
e85.. b106 + b107 =L= 1;
e86.. b108 + b109 + b110 =L= 1;
e87.. b111 + b112 + b113 =L= 1;
e88.. b114 + b115 + b116 =L= 1;
e89.. b117 + b118 + b119 =L= 1;
e90.. b120 + b121 + b122 =L= 1;
e91.. b123 + b124 + b125 =L= 1;
e92.. b126 + b127 + b128 =L= 1;
e93.. b129 + b130 + b131 =L= 1;
e94.. b132 + b133 + b134 =L= 1;
e95.. b135 + b136 + b137 =L= 1;
e96.. b138 + b139 + b140 =L= 1;
e97.. b141 + b142 + b143 =L= 1;
e98.. b144 + b145 + b146 + b147 + b148 =L= 1;
e99.. b149 + b150 + b151 + b152 + b153 =L= 1;
e100.. b154 + b155 + b156 + b157 + b158 =L= 1;
e101.. b159 + b160 + b161 + b162 + b163 =L= 1;
e102.. b164 + b165 + b166 + b167 + b168 =L= 1;
e103.. b169 + b170 + b171 + b172 + b173 =L= 1;
e104.. b174 + b175 + b176 =L= 1;
e105.. b177 + b178 + b179 =L= 1;
e106.. b180 + b181 + b182 =L= 1;
e107.. b183 + b184 + b185 =L= 1;
e108.. b186 + b187 + b188 =L= 1;
e109.. b189 + b190 + b191 =L= 1;
e110.. b192 + b193 + b194 + b195 =L= 1;
e111.. b196 + b197 + b198 + b199 =L= 1;
e112.. b200 + b201 + b202 + b203 =L= 1;
e113.. b204 + b205 + b206 + b207 =L= 1;
e114.. b208 + b209 + b210 + b211 =L= 1;
e115.. b212 + b213 + b214 + b215 =L= 1;
e116.. -(sqrt(i7*x13) + sqrt(i8*x14) + sqrt(i9*x15) + sqrt(i10*x16) + sqrt(i11*
x17) + sqrt(i12*x18)) + b49 + 2*b50 + 3*b51 + 4*b52 + 5*b53 + 6*b54
+ 7*b55 + 8*b56 + 9*b57 + 10*b58 + 11*b59 + 12*b60 + 13*b61 + 14*b62
+ b63 + 2*b64 + 3*b65 + 4*b66 + 5*b67 + 6*b68 + 7*b69 + 8*b70 + 9*b71
+ 10*b72 + 11*b73 + 12*b74 + b75 + 2*b76 + 3*b77 + 4*b78 + 5*b79
+ 6*b80 + 7*b81 + 8*b82 + b83 + 2*b84 + 3*b85 + 4*b86 + 5*b87 + 6*b88
+ 7*b89 + b90 + 2*b91 + 3*b92 + 4*b93 + b94 + 2*b95 + b96 + 2*b97 + b98
+ 2*b99 + b100 + 2*b101 + b102 + 2*b103 + b104 + 2*b105 + b106 + 2*b107
=L= -14;
e117.. -(sqrt(i7*x19) + sqrt(i8*x20) + sqrt(i9*x21) + sqrt(i10*x22) + sqrt(i11*
x23) + sqrt(i12*x24)) + b49 + 2*b50 + 3*b51 + 4*b52 + 5*b53 + 6*b54
+ 7*b55 + 8*b56 + 9*b57 + 10*b58 + 11*b59 + 12*b60 + 13*b61 + 14*b62
+ b63 + 2*b64 + 3*b65 + 4*b66 + 5*b67 + 6*b68 + 7*b69 + 8*b70 + 9*b71
+ 10*b72 + 11*b73 + 12*b74 + b75 + 2*b76 + 3*b77 + 4*b78 + 5*b79
+ 6*b80 + 7*b81 + 8*b82 + b83 + 2*b84 + 3*b85 + 4*b86 + 5*b87 + 6*b88
+ 7*b89 + b90 + 2*b91 + 3*b92 + 4*b93 + b94 + 2*b95 + b108 + 2*b109
+ 3*b110 + b111 + 2*b112 + 3*b113 + b114 + 2*b115 + 3*b116 + b117
+ 2*b118 + 3*b119 + b120 + 2*b121 + 3*b122 + b123 + 2*b124 + 3*b125
=L= -22;
e118.. -(sqrt(i7*x25) + sqrt(i8*x26) + sqrt(i9*x27) + sqrt(i10*x28) + sqrt(i11*
x29) + sqrt(i12*x30)) + b49 + 2*b50 + 3*b51 + 4*b52 + 5*b53 + 6*b54
+ 7*b55 + 8*b56 + 9*b57 + 10*b58 + 11*b59 + 12*b60 + 13*b61 + 14*b62
+ b63 + 2*b64 + 3*b65 + 4*b66 + 5*b67 + 6*b68 + 7*b69 + 8*b70 + 9*b71
+ 10*b72 + 11*b73 + 12*b74 + b75 + 2*b76 + 3*b77 + 4*b78 + 5*b79
+ 6*b80 + 7*b81 + 8*b82 + b83 + 2*b84 + 3*b85 + 4*b86 + 5*b87 + 6*b88
+ 7*b89 + b90 + 2*b91 + 3*b92 + 4*b93 + b94 + 2*b95 + b126 + 2*b127
+ 3*b128 + b129 + 2*b130 + 3*b131 + b132 + 2*b133 + 3*b134 + b135
+ 2*b136 + 3*b137 + b138 + 2*b139 + 3*b140 + b141 + 2*b142 + 3*b143
=L= -18;
e119.. -(sqrt(i7*x31) + sqrt(i8*x32) + sqrt(i9*x33) + sqrt(i10*x34) + sqrt(i11*
x35) + sqrt(i12*x36)) + b49 + 2*b50 + 3*b51 + 4*b52 + 5*b53 + 6*b54
+ 7*b55 + 8*b56 + 9*b57 + 10*b58 + 11*b59 + 12*b60 + 13*b61 + 14*b62
+ b63 + 2*b64 + 3*b65 + 4*b66 + 5*b67 + 6*b68 + 7*b69 + 8*b70 + 9*b71
+ 10*b72 + 11*b73 + 12*b74 + b75 + 2*b76 + 3*b77 + 4*b78 + 5*b79
+ 6*b80 + 7*b81 + 8*b82 + b83 + 2*b84 + 3*b85 + 4*b86 + 5*b87 + 6*b88
+ 7*b89 + b90 + 2*b91 + 3*b92 + 4*b93 + b94 + 2*b95 + b144 + 2*b145
+ 3*b146 + 4*b147 + 5*b148 + b149 + 2*b150 + 3*b151 + 4*b152 + 5*b153
+ b154 + 2*b155 + 3*b156 + 4*b157 + 5*b158 + b159 + 2*b160 + 3*b161
+ 4*b162 + 5*b163 + b164 + 2*b165 + 3*b166 + 4*b167 + 5*b168 + b169
+ 2*b170 + 3*b171 + 4*b172 + 5*b173 =L= -13;
e120.. -(sqrt(i7*x37) + sqrt(i8*x38) + sqrt(i9*x39) + sqrt(i10*x40) + sqrt(i11*
x41) + sqrt(i12*x42)) + b49 + 2*b50 + 3*b51 + 4*b52 + 5*b53 + 6*b54
+ 7*b55 + 8*b56 + 9*b57 + 10*b58 + 11*b59 + 12*b60 + 13*b61 + 14*b62
+ b63 + 2*b64 + 3*b65 + 4*b66 + 5*b67 + 6*b68 + 7*b69 + 8*b70 + 9*b71
+ 10*b72 + 11*b73 + 12*b74 + b75 + 2*b76 + 3*b77 + 4*b78 + 5*b79
+ 6*b80 + 7*b81 + 8*b82 + b83 + 2*b84 + 3*b85 + 4*b86 + 5*b87 + 6*b88
+ 7*b89 + b90 + 2*b91 + 3*b92 + 4*b93 + b94 + 2*b95 + b174 + 2*b175
+ 3*b176 + b177 + 2*b178 + 3*b179 + b180 + 2*b181 + 3*b182 + b183
+ 2*b184 + 3*b185 + b186 + 2*b187 + 3*b188 + b189 + 2*b190 + 3*b191
=L= -20;
e121.. -(sqrt(i7*x43) + sqrt(i8*x44) + sqrt(i9*x45) + sqrt(i10*x46) + sqrt(i11*
x47) + sqrt(i12*x48)) + b49 + 2*b50 + 3*b51 + 4*b52 + 5*b53 + 6*b54
+ 7*b55 + 8*b56 + 9*b57 + 10*b58 + 11*b59 + 12*b60 + 13*b61 + 14*b62
+ b63 + 2*b64 + 3*b65 + 4*b66 + 5*b67 + 6*b68 + 7*b69 + 8*b70 + 9*b71
+ 10*b72 + 11*b73 + 12*b74 + b75 + 2*b76 + 3*b77 + 4*b78 + 5*b79
+ 6*b80 + 7*b81 + 8*b82 + b83 + 2*b84 + 3*b85 + 4*b86 + 5*b87 + 6*b88
+ 7*b89 + b90 + 2*b91 + 3*b92 + 4*b93 + b94 + 2*b95 + b192 + 2*b193
+ 3*b194 + 4*b195 + b196 + 2*b197 + 3*b198 + 4*b199 + b200 + 2*b201
+ 3*b202 + 4*b203 + b204 + 2*b205 + 3*b206 + 4*b207 + b208 + 2*b209
+ 3*b210 + 4*b211 + b212 + 2*b213 + 3*b214 + 4*b215 =L= -22;
* set non-default bounds
i7.lo = 1; i7.up = 100;
i8.lo = 1; i8.up = 100;
i9.lo = 1; i9.up = 100;
i10.lo = 1; i10.up = 100;
i11.lo = 1; i11.up = 100;
i12.lo = 1; i12.up = 100;
x13.lo = 1;
x14.lo = 1;
x15.lo = 1;
x16.lo = 1;
x17.lo = 1;
x18.lo = 1;
x19.lo = 1;
x20.lo = 1;
x21.lo = 1;
x22.lo = 1;
x23.lo = 1;
x24.lo = 1;
x25.lo = 1;
x26.lo = 1;
x27.lo = 1;
x28.lo = 1;
x29.lo = 1;
x30.lo = 1;
x31.lo = 1;
x32.lo = 1;
x33.lo = 1;
x34.lo = 1;
x35.lo = 1;
x36.lo = 1;
x37.lo = 1;
x38.lo = 1;
x39.lo = 1;
x40.lo = 1;
x41.lo = 1;
x42.lo = 1;
x43.lo = 1;
x44.lo = 1;
x45.lo = 1;
x46.lo = 1;
x47.lo = 1;
x48.lo = 1;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

