MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance transswitch0014r

Optimal Transmission Switching problem modeled using quadratic functions (rectangular coordinates)
Formats ams gms mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
8082.58169000 p1 ( gdx sol )
(infeas: 2e-15)
Other points (infeas > 1e-08)  
Dual Bounds
0.00000000 (ANTIGONE)
0.00000000 (BARON)
0.00000000 (COUENNE)
0.00000000 (LINDO)
0.00000000 (SCIP)
3856.73592100 (SHOT)
References Hijazi, H L, Coffrin, C, and Van Hentenryck, P, Convex Quadratic Relaxations of Nonlinear Programs in Power Systems, Tech. Rep. 2013-09, Optimization Online, 2013.
Application Electricity Networks
Added to library 11 Mar 2014
Problem type MBNLP
#Variables 138
#Binary Variables 20
#Integer Variables 0
#Nonlinear Variables 133
#Nonlinear Binary Variables 20
#Nonlinear Integer Variables 0
Objective Sense min
Objective type quadratic
Objective curvature convex
#Nonzeros in Objective 5
#Nonlinear Nonzeros in Objective 5
#Constraints 197
#Linear Constraints 49
#Quadratic Constraints 68
#Polynomial Constraints 80
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 727
#Nonlinear Nonzeros in Jacobian 536
#Nonzeros in (Upper-Left) Hessian of Lagrangian 433
#Nonzeros in Diagonal of Hessian of Lagrangian 113
#Blocks in Hessian of Lagrangian 86
Minimal blocksize in Hessian of Lagrangian 1
Maximal blocksize in Hessian of Lagrangian 48
Average blocksize in Hessian of Lagrangian 1.546512
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e+00
Maximal coefficient 4.0000e+03
Infeasibility of initial point 0.942
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*        198      110       24       64        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        139      119       20        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        733      192      541        0
*
*  Solve m using MINLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
          ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53
          ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70
          ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87
          ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103
          ,x104,x105,x106,x107,x108,b109,b110,b111,b112,b113,b114,b115,b116
          ,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,x129
          ,x130,x131,x132,x133,x134,x135,x136,x137,x138,objvar;

Binary Variables  b109,b110,b111,b112,b113,b114,b115,b116,b117,b118,b119,b120
          ,b121,b122,b123,b124,b125,b126,b127,b128;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
          ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
          ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
          ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
          ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142
          ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155
          ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168
          ,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181
          ,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194
          ,e195,e196,e197,e198;


e1.. 430.293*sqr(x129) + 2000*x129 + 2500*sqr(x130) + 2000*x130 + 100*sqr(x131)
      + 4000*x131 + 100*sqr(x132) + 4000*x132 + 100*sqr(x133) + 4000*x133
      - objvar =E= 0;

e2.. -(1.1350191923074*(sqr(x82) + sqr(x96)) - 1.1350191923074*(x82*x83 + x96*
     x97) + 4.78186315175772*(x82*x97 - x83*x96))*b109 + x1 =E= 0;

e3.. -(1.1350191923074*(sqr(x83) + sqr(x97)) - 1.1350191923074*(x83*x82 + x97*
     x96) + 4.78186315175772*(x83*x96 - x82*x97))*b109 + x2 =E= 0;

e4.. -9.09008271975275*(x87*x103 - x89*x101)*b110 + x3 =E= 0;

e5.. -9.09008271975275*(x89*x101 - x87*x103)*b110 + x4 =E= 0;

e6.. -(1.8808847537004*(sqr(x90) + sqr(x104)) - 1.8808847537004*(x90*x91 + x104
     *x105) + 4.40294374946052*(x90*x105 - x91*x104))*b111 + x5 =E= 0;

e7.. -(1.8808847537004*(sqr(x91) + sqr(x105)) - 1.8808847537004*(x91*x90 + x105
     *x104) + 4.40294374946052*(x91*x104 - x90*x105))*b111 + x6 =E= 0;

e8.. -4.78194338179036*(x84*x101 - x87*x98)*b112 + x7 =E= 0;

e9.. -4.78194338179036*(x87*x98 - x84*x101)*b112 + x8 =E= 0;

e10.. -3.96793905245615*(x85*x100 - x86*x99)*b113 + x9 =E= 0;

e11.. -3.96793905245615*(x86*x99 - x85*x100)*b113 + x10 =E= 0;

e12.. -(1.42400548701993*(sqr(x89) + sqr(x103)) - 1.42400548701993*(x89*x94 + 
      x103*x108) + 3.0290504569306*(x89*x108 - x94*x103))*b114 + x11 =E= 0;

e13.. -(1.42400548701993*(sqr(x94) + sqr(x108)) - 1.42400548701993*(x94*x89 + 
      x108*x103) + 3.0290504569306*(x94*x103 - x89*x108))*b114 + x12 =E= 0;

e14.. -(6.84098066149567*(sqr(x84) + sqr(x98)) - 6.84098066149567*(x84*x85 + 
      x98*x99) + 21.5785539816916*(x84*x99 - x85*x98))*b115 + x13 =E= 0;

e15.. -(6.84098066149567*(sqr(x85) + sqr(x99)) - 6.84098066149567*(x85*x84 + 
      x99*x98) + 21.5785539816916*(x85*x98 - x84*x99))*b115 + x14 =E= 0;

e16.. -(3.09892740383799*(sqr(x86) + sqr(x100)) - 3.09892740383799*(x86*x93 + 
      x100*x107) + 6.10275544819311*(x86*x107 - x93*x100))*b116 + x15 =E= 0;

e17.. -(3.09892740383799*(sqr(x93) + sqr(x107)) - 3.09892740383799*(x93*x86 + 
      x107*x100) + 6.10275544819311*(x93*x100 - x86*x107))*b116 + x16 =E= 0;

e18.. -5.67697984672154*(x87*x102 - x88*x101)*b117 + x17 =E= 0;

e19.. -5.67697984672154*(x88*x101 - x87*x102)*b117 + x18 =E= 0;

e20.. -(1.13699415780633*(sqr(x93) + sqr(x107)) - 1.13699415780633*(x93*x94 + 
      x107*x108) + 2.31496347510535*(x93*x108 - x94*x107))*b118 + x19 =E= 0;

e21.. -(1.13699415780633*(sqr(x94) + sqr(x108)) - 1.13699415780633*(x94*x93 + 
      x108*x107) + 2.31496347510535*(x94*x107 - x93*x108))*b118 + x20 =E= 0;

e22.. -(1.52596744045097*(sqr(x86) + sqr(x100)) - 1.52596744045097*(x86*x92 + 
      x100*x106) + 3.1759639650294*(x86*x106 - x92*x100))*b119 + x21 =E= 0;

e23.. -(1.52596744045097*(sqr(x92) + sqr(x106)) - 1.52596744045097*(x92*x86 + 
      x106*x100) + 3.1759639650294*(x92*x100 - x86*x106))*b119 + x22 =E= 0;

e24.. -(1.95502856317726*(sqr(x86) + sqr(x100)) - 1.95502856317726*(x86*x91 + 
      x100*x105) + 4.09407434424044*(x86*x105 - x91*x100))*b120 + x23 =E= 0;

e25.. -(1.95502856317726*(sqr(x91) + sqr(x105)) - 1.95502856317726*(x91*x86 + 
      x105*x100) + 4.09407434424044*(x91*x100 - x86*x105))*b120 + x24 =E= 0;

e26.. -(2.48902458682192*(sqr(x92) + sqr(x106)) - 2.48902458682192*(x92*x93 + 
      x106*x107) + 2.25197462617221*(x92*x107 - x93*x106))*b121 + x25 =E= 0;

e27.. -(2.48902458682192*(sqr(x93) + sqr(x107)) - 2.48902458682192*(x93*x92 + 
      x107*x106) + 2.25197462617221*(x93*x106 - x92*x107))*b121 + x26 =E= 0;

e28.. -(1.02589745497019*(sqr(x81) + sqr(x95)) - 1.02589745497019*(x81*x85 + 
      x95*x99) + 4.23498368233483*(x81*x99 - x85*x95))*b122 + x27 =E= 0;

e29.. -(1.02589745497019*(sqr(x85) + sqr(x99)) - 1.02589745497019*(x85*x81 + 
      x99*x95) + 4.23498368233483*(x85*x95 - x81*x99))*b122 + x28 =E= 0;

e30.. -(3.90204955244743*(sqr(x89) + sqr(x103)) - 3.90204955244743*(x89*x90 + 
      x103*x104) + 10.3653941270609*(x89*x104 - x90*x103))*b123 + x29 =E= 0;

e31.. -(3.90204955244743*(sqr(x90) + sqr(x104)) - 3.90204955244743*(x90*x89 + 
      x104*x103) + 10.3653941270609*(x90*x103 - x89*x104))*b123 + x30 =E= 0;

e32.. -(4.99913160079803*(sqr(x81) + sqr(x95)) - 4.99913160079803*(x81*x82 + 
      x95*x96) + 15.2630865231796*(x81*x96 - x82*x95))*b124 + x31 =E= 0;

e33.. -(4.99913160079803*(sqr(x82) + sqr(x96)) - 4.99913160079803*(x82*x81 + 
      x96*x95) + 15.2630865231796*(x82*x95 - x81*x96))*b124 + x32 =E= 0;

e34.. -(1.7011396670944*(sqr(x82) + sqr(x96)) - 1.7011396670944*(x82*x85 + x96*
      x99) + 5.19392739796971*(x82*x99 - x85*x96))*b125 + x33 =E= 0;

e35.. -(1.7011396670944*(sqr(x85) + sqr(x99)) - 1.7011396670944*(x85*x82 + x99*
      x96) + 5.19392739796971*(x85*x96 - x82*x99))*b125 + x34 =E= 0;

e36.. -(1.98597570992556*(sqr(x83) + sqr(x97)) - 1.98597570992556*(x83*x84 + 
      x97*x98) + 5.06881697759392*(x83*x98 - x84*x97))*b126 + x35 =E= 0;

e37.. -(1.98597570992556*(sqr(x84) + sqr(x98)) - 1.98597570992556*(x84*x83 + 
      x98*x97) + 5.06881697759392*(x84*x97 - x83*x98))*b126 + x36 =E= 0;

e38.. -1.79797907152361*(x84*x103 - x89*x98)*b127 + x37 =E= 0;

e39.. -1.79797907152361*(x89*x98 - x84*x103)*b127 + x38 =E= 0;

e40.. -(1.68603315061494*(sqr(x82) + sqr(x96)) - 1.68603315061494*(x82*x84 + 
      x96*x98) + 5.11583832587208*(x82*x98 - x84*x96))*b128 + x39 =E= 0;

e41.. -(1.68603315061494*(sqr(x84) + sqr(x98)) - 1.68603315061494*(x84*x82 + 
      x98*x96) + 5.11583832587208*(x84*x96 - x82*x98))*b128 + x40 =E= 0;

e42.. -(4.75996315175772*(sqr(x82) + sqr(x96)) - 4.78186315175772*(x82*x83 + 
      x96*x97) - 1.1350191923074*(x82*x97 - x83*x96))*b109 + x41 =E= 0;

e43.. -(4.75996315175772*(sqr(x83) + sqr(x97)) - 4.78186315175772*(x83*x82 + 
      x97*x96) - 1.1350191923074*(x83*x96 - x82*x97))*b109 + x42 =E= 0;

e44.. -(9.09008271975275*(sqr(x87) + sqr(x101)) - 9.09008271975275*(x87*x89 + 
      x101*x103))*b110 + x43 =E= 0;

e45.. -(9.09008271975275*(sqr(x89) + sqr(x103)) - 9.09008271975275*(x89*x87 + 
      x103*x101))*b110 + x44 =E= 0;

e46.. -(4.40294374946052*(sqr(x90) + sqr(x104)) - 4.40294374946052*(x90*x91 + 
      x104*x105) - 1.8808847537004*(x90*x105 - x91*x104))*b111 + x45 =E= 0;

e47.. -(4.40294374946052*(sqr(x91) + sqr(x105)) - 4.40294374946052*(x91*x90 + 
      x105*x104) - 1.8808847537004*(x91*x104 - x90*x105))*b111 + x46 =E= 0;

e48.. -(4.78194338179036*(sqr(x84) + sqr(x98)) - 4.78194338179036*(x84*x87 + 
      x98*x101))*b112 + x47 =E= 0;

e49.. -(4.78194338179036*(sqr(x87) + sqr(x101)) - 4.78194338179036*(x87*x84 + 
      x101*x98))*b112 + x48 =E= 0;

e50.. -(3.96793905245615*(sqr(x85) + sqr(x99)) - 3.96793905245615*(x85*x86 + 
      x99*x100))*b113 + x49 =E= 0;

e51.. -(3.96793905245615*(sqr(x86) + sqr(x100)) - 3.96793905245615*(x86*x85 + 
      x100*x99))*b113 + x50 =E= 0;

e52.. -(3.0290504569306*(sqr(x89) + sqr(x103)) - 3.0290504569306*(x89*x94 + 
      x103*x108) - 1.42400548701993*(x89*x108 - x94*x103))*b114 + x51 =E= 0;

e53.. -(3.0290504569306*(sqr(x94) + sqr(x108)) - 3.0290504569306*(x94*x89 + 
      x108*x103) - 1.42400548701993*(x94*x103 - x89*x108))*b114 + x52 =E= 0;

e54.. -(21.5785539816916*(sqr(x84) + sqr(x98)) - 21.5785539816916*(x84*x85 + 
      x98*x99) - 6.84098066149567*(x84*x99 - x85*x98))*b115 + x53 =E= 0;

e55.. -(21.5785539816916*(sqr(x85) + sqr(x99)) - 21.5785539816916*(x85*x84 + 
      x99*x98) - 6.84098066149567*(x85*x98 - x84*x99))*b115 + x54 =E= 0;

e56.. -(6.10275544819311*(sqr(x86) + sqr(x100)) - 6.10275544819311*(x86*x93 + 
      x100*x107) - 3.09892740383799*(x86*x107 - x93*x100))*b116 + x55 =E= 0;

e57.. -(6.10275544819311*(sqr(x93) + sqr(x107)) - 6.10275544819311*(x93*x86 + 
      x107*x100) - 3.09892740383799*(x93*x100 - x86*x107))*b116 + x56 =E= 0;

e58.. -(5.67697984672154*(sqr(x87) + sqr(x101)) - 5.67697984672154*(x87*x88 + 
      x101*x102))*b117 + x57 =E= 0;

e59.. -(5.67697984672154*(sqr(x88) + sqr(x102)) - 5.67697984672154*(x88*x87 + 
      x102*x101))*b117 + x58 =E= 0;

e60.. -(2.31496347510535*(sqr(x93) + sqr(x107)) - 2.31496347510535*(x93*x94 + 
      x107*x108) - 1.13699415780633*(x93*x108 - x94*x107))*b118 + x59 =E= 0;

e61.. -(2.31496347510535*(sqr(x94) + sqr(x108)) - 2.31496347510535*(x94*x93 + 
      x108*x107) - 1.13699415780633*(x94*x107 - x93*x108))*b118 + x60 =E= 0;

e62.. -(3.1759639650294*(sqr(x86) + sqr(x100)) - 3.1759639650294*(x86*x92 + 
      x100*x106) - 1.52596744045097*(x86*x106 - x92*x100))*b119 + x61 =E= 0;

e63.. -(3.1759639650294*(sqr(x92) + sqr(x106)) - 3.1759639650294*(x92*x86 + 
      x106*x100) - 1.52596744045097*(x92*x100 - x86*x106))*b119 + x62 =E= 0;

e64.. -(4.09407434424044*(sqr(x86) + sqr(x100)) - 4.09407434424044*(x86*x91 + 
      x100*x105) - 1.95502856317726*(x86*x105 - x91*x100))*b120 + x63 =E= 0;

e65.. -(4.09407434424044*(sqr(x91) + sqr(x105)) - 4.09407434424044*(x91*x86 + 
      x105*x100) - 1.95502856317726*(x91*x100 - x86*x105))*b120 + x64 =E= 0;

e66.. -(2.25197462617221*(sqr(x92) + sqr(x106)) - 2.25197462617221*(x92*x93 + 
      x106*x107) - 2.48902458682192*(x92*x107 - x93*x106))*b121 + x65 =E= 0;

e67.. -(2.25197462617221*(sqr(x93) + sqr(x107)) - 2.25197462617221*(x93*x92 + 
      x107*x106) - 2.48902458682192*(x93*x106 - x92*x107))*b121 + x66 =E= 0;

e68.. -(4.21038368233483*(sqr(x81) + sqr(x95)) - 4.23498368233483*(x81*x85 + 
      x95*x99) - 1.02589745497019*(x81*x99 - x85*x95))*b122 + x67 =E= 0;

e69.. -(4.21038368233483*(sqr(x85) + sqr(x99)) - 4.23498368233483*(x85*x81 + 
      x99*x95) - 1.02589745497019*(x85*x95 - x81*x99))*b122 + x68 =E= 0;

e70.. -(10.3653941270609*(sqr(x89) + sqr(x103)) - 10.3653941270609*(x89*x90 + 
      x103*x104) - 3.90204955244743*(x89*x104 - x90*x103))*b123 + x69 =E= 0;

e71.. -(10.3653941270609*(sqr(x90) + sqr(x104)) - 10.3653941270609*(x90*x89 + 
      x104*x103) - 3.90204955244743*(x90*x103 - x89*x104))*b123 + x70 =E= 0;

e72.. -(15.2366865231796*(sqr(x81) + sqr(x95)) - 15.2630865231796*(x81*x82 + 
      x95*x96) - 4.99913160079803*(x81*x96 - x82*x95))*b124 + x71 =E= 0;

e73.. -(15.2366865231796*(sqr(x82) + sqr(x96)) - 15.2630865231796*(x82*x81 + 
      x96*x95) - 4.99913160079803*(x82*x95 - x81*x96))*b124 + x72 =E= 0;

e74.. -(5.17662739796971*(sqr(x82) + sqr(x96)) - 5.19392739796971*(x82*x85 + 
      x96*x99) - 1.7011396670944*(x82*x99 - x85*x96))*b125 + x73 =E= 0;

e75.. -(5.17662739796971*(sqr(x85) + sqr(x99)) - 5.19392739796971*(x85*x82 + 
      x99*x96) - 1.7011396670944*(x85*x96 - x82*x99))*b125 + x74 =E= 0;

e76.. -(5.06241697759392*(sqr(x83) + sqr(x97)) - 5.06881697759392*(x83*x84 + 
      x97*x98) - 1.98597570992556*(x83*x98 - x84*x97))*b126 + x75 =E= 0;

e77.. -(5.06241697759392*(sqr(x84) + sqr(x98)) - 5.06881697759392*(x84*x83 + 
      x98*x97) - 1.98597570992556*(x84*x97 - x83*x98))*b126 + x76 =E= 0;

e78.. -(1.79797907152361*(sqr(x84) + sqr(x98)) - 1.79797907152361*(x84*x89 + 
      x98*x103))*b127 + x77 =E= 0;

e79.. -(1.79797907152361*(sqr(x89) + sqr(x103)) - 1.79797907152361*(x89*x84 + 
      x103*x98))*b127 + x78 =E= 0;

e80.. -(5.09883832587208*(sqr(x82) + sqr(x96)) - 5.11583832587208*(x82*x84 + 
      x96*x98) - 1.68603315061494*(x82*x98 - x84*x96))*b128 + x79 =E= 0;

e81.. -(5.09883832587208*(sqr(x84) + sqr(x98)) - 5.11583832587208*(x84*x82 + 
      x98*x96) - 1.68603315061494*(x84*x96 - x82*x98))*b128 + x80 =E= 0;

e82.. sqr(x1) + sqr(x41) =L= 9801;

e83.. sqr(x2) + sqr(x42) =L= 9801;

e84.. sqr(x3) + sqr(x43) =L= 9801;

e85.. sqr(x4) + sqr(x44) =L= 9801;

e86.. sqr(x5) + sqr(x45) =L= 9801;

e87.. sqr(x6) + sqr(x46) =L= 9801;

e88.. sqr(x7) + sqr(x47) =L= 9801;

e89.. sqr(x8) + sqr(x48) =L= 9801;

e90.. sqr(x9) + sqr(x49) =L= 9801;

e91.. sqr(x10) + sqr(x50) =L= 9801;

e92.. sqr(x11) + sqr(x51) =L= 9801;

e93.. sqr(x12) + sqr(x52) =L= 9801;

e94.. sqr(x13) + sqr(x53) =L= 9801;

e95.. sqr(x14) + sqr(x54) =L= 9801;

e96.. sqr(x15) + sqr(x55) =L= 9801;

e97.. sqr(x16) + sqr(x56) =L= 9801;

e98.. sqr(x17) + sqr(x57) =L= 9801;

e99.. sqr(x18) + sqr(x58) =L= 9801;

e100.. sqr(x19) + sqr(x59) =L= 9801;

e101.. sqr(x20) + sqr(x60) =L= 9801;

e102.. sqr(x21) + sqr(x61) =L= 9801;

e103.. sqr(x22) + sqr(x62) =L= 9801;

e104.. sqr(x23) + sqr(x63) =L= 9801;

e105.. sqr(x24) + sqr(x64) =L= 9801;

e106.. sqr(x25) + sqr(x65) =L= 9801;

e107.. sqr(x26) + sqr(x66) =L= 9801;

e108.. sqr(x27) + sqr(x67) =L= 9801;

e109.. sqr(x28) + sqr(x68) =L= 9801;

e110.. sqr(x29) + sqr(x69) =L= 9801;

e111.. sqr(x30) + sqr(x70) =L= 9801;

e112.. sqr(x31) + sqr(x71) =L= 9801;

e113.. sqr(x32) + sqr(x72) =L= 9801;

e114.. sqr(x33) + sqr(x73) =L= 9801;

e115.. sqr(x34) + sqr(x74) =L= 9801;

e116.. sqr(x35) + sqr(x75) =L= 9801;

e117.. sqr(x36) + sqr(x76) =L= 9801;

e118.. sqr(x37) + sqr(x77) =L= 9801;

e119.. sqr(x38) + sqr(x78) =L= 9801;

e120.. sqr(x39) + sqr(x79) =L= 9801;

e121.. sqr(x40) + sqr(x80) =L= 9801;

e122.. sqr(x81) + sqr(x95) =L= 1.1236;

e123.. sqr(x82) + sqr(x96) =L= 1.1236;

e124.. sqr(x83) + sqr(x97) =L= 1.1236;

e125.. sqr(x84) + sqr(x98) =L= 1.1236;

e126.. sqr(x85) + sqr(x99) =L= 1.1236;

e127.. sqr(x86) + sqr(x100) =L= 1.1236;

e128.. sqr(x87) + sqr(x101) =L= 1.1236;

e129.. sqr(x88) + sqr(x102) =L= 1.1236;

e130.. sqr(x89) + sqr(x103) =L= 1.1236;

e131.. sqr(x90) + sqr(x104) =L= 1.1236;

e132.. sqr(x91) + sqr(x105) =L= 1.1236;

e133.. sqr(x92) + sqr(x106) =L= 1.1236;

e134.. sqr(x93) + sqr(x107) =L= 1.1236;

e135.. sqr(x94) + sqr(x108) =L= 1.1236;

e136.. sqr(x81) + sqr(x95) =G= 0.8836;

e137.. sqr(x82) + sqr(x96) =G= 0.8836;

e138.. sqr(x83) + sqr(x97) =G= 0.8836;

e139.. sqr(x84) + sqr(x98) =G= 0.8836;

e140.. sqr(x85) + sqr(x99) =G= 0.8836;

e141.. sqr(x86) + sqr(x100) =G= 0.8836;

e142.. sqr(x87) + sqr(x101) =G= 0.8836;

e143.. sqr(x88) + sqr(x102) =G= 0.8836;

e144.. sqr(x89) + sqr(x103) =G= 0.8836;

e145.. sqr(x90) + sqr(x104) =G= 0.8836;

e146.. sqr(x91) + sqr(x105) =G= 0.8836;

e147.. sqr(x92) + sqr(x106) =G= 0.8836;

e148.. sqr(x93) + sqr(x107) =G= 0.8836;

e149.. sqr(x94) + sqr(x108) =G= 0.8836;

e150..    x129 =L= 3.324;

e151..    x130 =L= 1.4;

e152..    x131 =L= 1;

e153..    x132 =L= 1;

e154..    x133 =L= 1;

e155..    x129 =G= 0;

e156..    x130 =G= 0;

e157..    x131 =G= 0;

e158..    x132 =G= 0;

e159..    x133 =G= 0;

e160..    x134 =L= 0.1;

e161..    x135 =L= 0.5;

e162..    x136 =L= 0.4;

e163..    x137 =L= 0.24;

e164..    x138 =L= 0.24;

e165..    x134 =G= 0;

e166..    x135 =G= -0.4;

e167..    x136 =G= 0;

e168..    x137 =G= -0.06;

e169..    x138 =G= -0.06;

e170..    x95 =E= 0;

e171..    x27 + x31 - x129 =E= 0;

e172..    x1 + x32 + x33 + x39 - x130 =E= -0.217;

e173..    x2 + x35 - x131 =E= -0.942;

e174..    x10 + x15 + x21 + x23 - x132 =E= -0.112;

e175..    x18 - x133 =E= 0;

e176..    x67 + x71 - x134 =E= 0;

e177..    x41 + x72 + x73 + x79 - x135 =E= -0.127;

e178..    x42 + x75 - x136 =E= -0.19;

e179..    x50 + x55 + x61 + x63 - x137 =E= -0.075;

e180..    x58 - x138 =E= 0;

e181..    x7 + x13 + x36 + x37 + x40 =E= -0.478;

e182..    x9 + x14 + x28 + x34 =E= -0.076;

e183..    x3 + x8 + x17 =E= 0;

e184..    x4 + x11 + x29 + x38 =E= -0.295;

e185..    x5 + x30 =E= -0.09;

e186..    x6 + x24 =E= -0.035;

e187..    x22 + x25 =E= -0.061;

e188..    x16 + x19 + x26 =E= -0.135;

e189..    x12 + x20 =E= -0.149;

e190..    x47 + x53 + x76 + x77 + x80 =E= 0.039;

e191..    x49 + x54 + x68 + x74 =E= -0.016;

e192..    x43 + x48 + x57 =E= 0;

e193..    x44 + x51 + x69 + x78 =E= -0.166;

e194..    x45 + x70 =E= -0.058;

e195..    x46 + x64 =E= -0.018;

e196..    x62 + x65 =E= -0.016;

e197..    x56 + x59 + x66 =E= -0.058;

e198..    x52 + x60 =E= -0.05;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2022-04-26 Git hash: de668763
Imprint / Privacy Policy / License: CC-BY 4.0