MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance tspn08
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 266.38129820 (ANTIGONE) 290.56685390 (BARON) 285.75075350 (COUENNE) 288.68966410 (GUROBI) 264.99874910 (LINDO) 284.90970650 (SCIP) 0.00000000 (SHOT) 289.64297140 (XPRESS) |
| Referencesⓘ | Gentilini, Iacopo, Margot, François, and Shimada, Kenji, The Traveling Salesman Problem with Neighborhoods: MINLP Solution, Optimization Methods and Software, 28:2, 2013, 364-378. |
| Sourceⓘ | tspn8Couenne.nl from minlp.org model 124 |
| Applicationⓘ | Traveling Salesman Problem with Neighborhoods |
| Added to libraryⓘ | 21 Feb 2014 |
| Problem typeⓘ | MBNLP |
| #Variablesⓘ | 44 |
| #Binary Variablesⓘ | 28 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 44 |
| #Nonlinear Binary Variablesⓘ | 28 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | nonlinear |
| Objective curvatureⓘ | indefinite |
| #Nonzeros in Objectiveⓘ | 44 |
| #Nonlinear Nonzeros in Objectiveⓘ | 44 |
| #Constraintsⓘ | 18 |
| #Linear Constraintsⓘ | 10 |
| #Quadratic Constraintsⓘ | 8 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | mul sqr sqrt |
| Constraints curvatureⓘ | convex |
| #Nonzeros in Jacobianⓘ | 92 |
| #Nonlinear Nonzeros in Jacobianⓘ | 16 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 480 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 16 |
| #Blocks in Hessian of Lagrangianⓘ | 1 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 44 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 44 |
| Average blocksize in Hessian of Lagrangianⓘ | 44.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 5.9172e-03 |
| Maximal coefficientⓘ | 8.5432e+00 |
| Infeasibility of initial pointⓘ | 2 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 19 9 0 10 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 45 17 28 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 137 77 60 0
*
* Solve m using MINLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,b17,b18,b19
,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36
,b37,b38,b39,b40,b41,b42,b43,b44,objvar;
Positive Variables x8,x13;
Binary Variables b17,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31
,b32,b33,b34,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19;
e1.. sqrt(sqr(x1 - x3) + sqr(x2 - x4))*b17 + sqrt(sqr(x1 - x5) + sqr(x2 - x6))*
b18 + sqrt(sqr(x1 - x7) + sqr(x2 - x8))*b19 + sqrt(sqr(x1 - x9) + sqr(x2
- x10))*b20 + sqrt(sqr(x1 - x11) + sqr(x2 - x12))*b21 + sqrt(sqr(x1 - x13
) + sqr(x2 - x14))*b22 + sqrt(sqr(x1 - x15) + sqr(x2 - x16))*b23 + sqrt(
sqr(x3 - x5) + sqr(x4 - x6))*b24 + sqrt(sqr(x3 - x7) + sqr(x4 - x8))*b25
+ sqrt(sqr(x3 - x9) + sqr(x4 - x10))*b26 + sqrt(sqr(x3 - x11) + sqr(x4 -
x12))*b27 + sqrt(sqr(x3 - x13) + sqr(x4 - x14))*b28 + sqrt(sqr(x3 - x15)
+ sqr(x4 - x16))*b29 + sqrt(sqr(x5 - x7) + sqr(x6 - x8))*b30 + sqrt(sqr(
x5 - x9) + sqr(x6 - x10))*b31 + sqrt(sqr(x5 - x11) + sqr(x6 - x12))*b32 +
sqrt(sqr(x5 - x13) + sqr(x6 - x14))*b33 + sqrt(sqr(x5 - x15) + sqr(x6 -
x16))*b34 + sqrt(sqr(x7 - x9) + sqr(x8 - x10))*b35 + sqrt(sqr(x7 - x11) +
sqr(x8 - x12))*b36 + sqrt(sqr(x7 - x13) + sqr(x8 - x14))*b37 + sqrt(sqr(x7
- x15) + sqr(x8 - x16))*b38 + sqrt(sqr(x9 - x11) + sqr(x10 - x12))*b39 +
sqrt(sqr(x9 - x13) + sqr(x10 - x14))*b40 + sqrt(sqr(x9 - x15) + sqr(x10 -
x16))*b41 + sqrt(sqr(x11 - x13) + sqr(x12 - x14))*b42 + sqrt(sqr(x11 - x15
) + sqr(x12 - x16))*b43 + sqrt(sqr(x13 - x15) + sqr(x14 - x16))*b44
- objvar =E= 0;
e2.. 0.013840830449827*sqr(x1) - 0.318339100346021*x1 + 0.0236686390532544*sqr(
x2) - 2.9112426035503*x2 =L= -90.3511598861612;
e3.. 0.0493827160493827*sqr(x3) - 3.30864197530864*x3 + 0.04*sqr(x4) - 1.36*x4
=L= -65.9797530864197;
e4.. 0.0330578512396694*sqr(x5) - 0.694214876033058*x5 + 0.0493827160493827*
sqr(x6) - 8.54320987654321*x6 =L= -372.138455259667;
e5.. 0.0330578512396694*sqr(x7) - 6.57851239669422*x7 + 0.013840830449827*sqr(
x8) - 0.235294117647059*x8 =L= -327.280991735537;
e6.. 0.00826446280991736*sqr(x9) - 0.446280991735537*x9 + 0.013840830449827*
sqr(x10) - 2.92041522491349*x10 =L= -159.076696502617;
e7.. 0.0330578512396694*sqr(x11) - 4.13223140495868*x11 + 0.013840830449827*
sqr(x12) - 3.22491349480969*x12 =L= -315.983442477623;
e8.. 0.00756143667296786*sqr(x13) - 0.173913043478261*x13 + 0.0123456790123457*
sqr(x14) - 0.395061728395062*x14 =L= -3.16049382716049;
e9.. 0.00591715976331361*sqr(x15) - 0.72189349112426*x15 + 0.00694444444444444*
sqr(x16) - 1.38888888888889*x16 =L= -90.4621959237344;
e10.. b17 + b18 + b19 + b20 + b21 + b22 + b23 =E= 2;
e11.. b17 + b24 + b25 + b26 + b27 + b28 + b29 =E= 2;
e12.. b18 + b24 + b30 + b31 + b32 + b33 + b34 =E= 2;
e13.. b19 + b25 + b30 + b35 + b36 + b37 + b38 =E= 2;
e14.. b20 + b26 + b31 + b35 + b39 + b40 + b41 =E= 2;
e15.. b21 + b27 + b32 + b36 + b39 + b42 + b43 =E= 2;
e16.. b22 + b28 + b33 + b37 + b40 + b42 + b44 =E= 2;
e17.. b23 + b29 + b34 + b38 + b41 + b43 + b44 =E= 2;
e18.. b18 + b20 + b21 + b23 + b31 + b32 + b34 + b39 + b41 + b43 =L= 4;
e19.. b17 + b18 + b19 + b22 + b24 + b25 + b28 + b30 + b33 + b37 =L= 4;
* set non-default bounds
x1.lo = 3; x1.up = 20;
x2.lo = 55; x2.up = 68;
x3.lo = 29; x3.up = 38;
x4.lo = 12; x4.up = 22;
x5.lo = 5; x5.up = 16;
x6.lo = 82; x6.up = 91;
x7.lo = 94; x7.up = 105;
x8.up = 17;
x9.lo = 16; x9.up = 38;
x10.lo = 97; x10.up = 114;
x11.lo = 57; x11.up = 68;
x12.lo = 108; x12.up = 125;
x13.up = 23;
x14.lo = 7; x14.up = 25;
x15.lo = 48; x15.up = 74;
x16.lo = 88; x16.up = 112;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

