MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance tspn08
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 266.38129820 (ANTIGONE) 290.56685270 (BARON) 285.75075350 (COUENNE) 264.99874910 (LINDO) 284.90970650 (SCIP) 0.00000000 (SHOT) |
Referencesⓘ | Gentilini, Iacopo, Margot, François, and Shimada, Kenji, The Traveling Salesman Problem with Neighborhoods: MINLP Solution, Optimization Methods and Software, 28:2, 2013, 364-378. |
Sourceⓘ | tspn8Couenne.nl from minlp.org model 124 |
Applicationⓘ | Traveling Salesman Problem with Neighborhoods |
Added to libraryⓘ | 21 Feb 2014 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 44 |
#Binary Variablesⓘ | 28 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 44 |
#Nonlinear Binary Variablesⓘ | 28 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 44 |
#Nonlinear Nonzeros in Objectiveⓘ | 44 |
#Constraintsⓘ | 18 |
#Linear Constraintsⓘ | 10 |
#Quadratic Constraintsⓘ | 8 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | mul sqr sqrt |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 92 |
#Nonlinear Nonzeros in Jacobianⓘ | 16 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 480 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 16 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 44 |
Maximal blocksize in Hessian of Lagrangianⓘ | 44 |
Average blocksize in Hessian of Lagrangianⓘ | 44.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 5.9172e-03 |
Maximal coefficientⓘ | 8.5432e+00 |
Infeasibility of initial pointⓘ | 2 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 19 9 0 10 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 45 17 28 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 137 77 60 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,b17,b18,b19 ,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36 ,b37,b38,b39,b40,b41,b42,b43,b44,objvar; Positive Variables x8,x13; Binary Variables b17,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31 ,b32,b33,b34,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19; e1.. sqrt(sqr(x1 - x3) + sqr(x2 - x4))*b17 + sqrt(sqr(x1 - x5) + sqr(x2 - x6))* b18 + sqrt(sqr(x1 - x7) + sqr(x2 - x8))*b19 + sqrt(sqr(x1 - x9) + sqr(x2 - x10))*b20 + sqrt(sqr(x1 - x11) + sqr(x2 - x12))*b21 + sqrt(sqr(x1 - x13 ) + sqr(x2 - x14))*b22 + sqrt(sqr(x1 - x15) + sqr(x2 - x16))*b23 + sqrt( sqr(x3 - x5) + sqr(x4 - x6))*b24 + sqrt(sqr(x3 - x7) + sqr(x4 - x8))*b25 + sqrt(sqr(x3 - x9) + sqr(x4 - x10))*b26 + sqrt(sqr(x3 - x11) + sqr(x4 - x12))*b27 + sqrt(sqr(x3 - x13) + sqr(x4 - x14))*b28 + sqrt(sqr(x3 - x15) + sqr(x4 - x16))*b29 + sqrt(sqr(x5 - x7) + sqr(x6 - x8))*b30 + sqrt(sqr( x5 - x9) + sqr(x6 - x10))*b31 + sqrt(sqr(x5 - x11) + sqr(x6 - x12))*b32 + sqrt(sqr(x5 - x13) + sqr(x6 - x14))*b33 + sqrt(sqr(x5 - x15) + sqr(x6 - x16))*b34 + sqrt(sqr(x7 - x9) + sqr(x8 - x10))*b35 + sqrt(sqr(x7 - x11) + sqr(x8 - x12))*b36 + sqrt(sqr(x7 - x13) + sqr(x8 - x14))*b37 + sqrt(sqr(x7 - x15) + sqr(x8 - x16))*b38 + sqrt(sqr(x9 - x11) + sqr(x10 - x12))*b39 + sqrt(sqr(x9 - x13) + sqr(x10 - x14))*b40 + sqrt(sqr(x9 - x15) + sqr(x10 - x16))*b41 + sqrt(sqr(x11 - x13) + sqr(x12 - x14))*b42 + sqrt(sqr(x11 - x15 ) + sqr(x12 - x16))*b43 + sqrt(sqr(x13 - x15) + sqr(x14 - x16))*b44 - objvar =E= 0; e2.. 0.013840830449827*sqr(x1) - 0.318339100346021*x1 + 0.0236686390532544*sqr( x2) - 2.9112426035503*x2 =L= -90.3511598861612; e3.. 0.0493827160493827*sqr(x3) - 3.30864197530864*x3 + 0.04*sqr(x4) - 1.36*x4 =L= -65.9797530864197; e4.. 0.0330578512396694*sqr(x5) - 0.694214876033058*x5 + 0.0493827160493827* sqr(x6) - 8.54320987654321*x6 =L= -372.138455259667; e5.. 0.0330578512396694*sqr(x7) - 6.57851239669422*x7 + 0.013840830449827*sqr( x8) - 0.235294117647059*x8 =L= -327.280991735537; e6.. 0.00826446280991736*sqr(x9) - 0.446280991735537*x9 + 0.013840830449827* sqr(x10) - 2.92041522491349*x10 =L= -159.076696502617; e7.. 0.0330578512396694*sqr(x11) - 4.13223140495868*x11 + 0.013840830449827* sqr(x12) - 3.22491349480969*x12 =L= -315.983442477623; e8.. 0.00756143667296786*sqr(x13) - 0.173913043478261*x13 + 0.0123456790123457* sqr(x14) - 0.395061728395062*x14 =L= -3.16049382716049; e9.. 0.00591715976331361*sqr(x15) - 0.72189349112426*x15 + 0.00694444444444444* sqr(x16) - 1.38888888888889*x16 =L= -90.4621959237344; e10.. b17 + b18 + b19 + b20 + b21 + b22 + b23 =E= 2; e11.. b17 + b24 + b25 + b26 + b27 + b28 + b29 =E= 2; e12.. b18 + b24 + b30 + b31 + b32 + b33 + b34 =E= 2; e13.. b19 + b25 + b30 + b35 + b36 + b37 + b38 =E= 2; e14.. b20 + b26 + b31 + b35 + b39 + b40 + b41 =E= 2; e15.. b21 + b27 + b32 + b36 + b39 + b42 + b43 =E= 2; e16.. b22 + b28 + b33 + b37 + b40 + b42 + b44 =E= 2; e17.. b23 + b29 + b34 + b38 + b41 + b43 + b44 =E= 2; e18.. b18 + b20 + b21 + b23 + b31 + b32 + b34 + b39 + b41 + b43 =L= 4; e19.. b17 + b18 + b19 + b22 + b24 + b25 + b28 + b30 + b33 + b37 =L= 4; * set non-default bounds x1.lo = 3; x1.up = 20; x2.lo = 55; x2.up = 68; x3.lo = 29; x3.up = 38; x4.lo = 12; x4.up = 22; x5.lo = 5; x5.up = 16; x6.lo = 82; x6.up = 91; x7.lo = 94; x7.up = 105; x8.up = 17; x9.lo = 16; x9.up = 38; x10.lo = 97; x10.up = 114; x11.lo = 57; x11.up = 68; x12.lo = 108; x12.up = 125; x13.up = 23; x14.lo = 7; x14.up = 25; x15.lo = 48; x15.up = 74; x16.lo = 88; x16.up = 112; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f