MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance tspn10
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 202.39445910 (ANTIGONE) 225.12607080 (BARON) 214.86665950 (COUENNE) 203.45630180 (LINDO) 204.03369990 (SCIP) 0.00000000 (SHOT) |
Referencesⓘ | Gentilini, Iacopo, Margot, François, and Shimada, Kenji, The Traveling Salesman Problem with Neighborhoods: MINLP Solution, Optimization Methods and Software, 28:2, 2013, 364-378. |
Sourceⓘ | tspn10Couenne.nl from minlp.org model 124 |
Applicationⓘ | Traveling Salesman Problem with Neighborhoods |
Added to libraryⓘ | 21 Feb 2014 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 65 |
#Binary Variablesⓘ | 45 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 65 |
#Nonlinear Binary Variablesⓘ | 45 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 65 |
#Nonlinear Nonzeros in Objectiveⓘ | 65 |
#Constraintsⓘ | 21 |
#Linear Constraintsⓘ | 11 |
#Quadratic Constraintsⓘ | 10 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | mul sqr sqrt |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 113 |
#Nonlinear Nonzeros in Jacobianⓘ | 20 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 760 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 20 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 65 |
Maximal blocksize in Hessian of Lagrangianⓘ | 65 |
Average blocksize in Hessian of Lagrangianⓘ | 65.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 8.2645e-03 |
Maximal coefficientⓘ | 6.2667e+01 |
Infeasibility of initial pointⓘ | 2 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 22 11 0 11 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 66 21 45 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 179 94 85 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36 ,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53 ,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,objvar; Positive Variables x10; Binary Variables b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35 ,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52 ,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22; e1.. sqrt(sqr(x1 - x3) + sqr(x2 - x4))*b21 + sqrt(sqr(x1 - x5) + sqr(x2 - x6))* b22 + sqrt(sqr(x1 - x7) + sqr(x2 - x8))*b23 + sqrt(sqr(x1 - x9) + sqr(x2 - x10))*b24 + sqrt(sqr(x1 - x11) + sqr(x2 - x12))*b25 + sqrt(sqr(x1 - x13 ) + sqr(x2 - x14))*b26 + sqrt(sqr(x1 - x15) + sqr(x2 - x16))*b27 + sqrt( sqr(x1 - x17) + sqr(x2 - x18))*b28 + sqrt(sqr(x1 - x19) + sqr(x2 - x20))* b29 + sqrt(sqr(x3 - x5) + sqr(x4 - x6))*b30 + sqrt(sqr(x3 - x7) + sqr(x4 - x8))*b31 + sqrt(sqr(x3 - x9) + sqr(x4 - x10))*b32 + sqrt(sqr(x3 - x11) + sqr(x4 - x12))*b33 + sqrt(sqr(x3 - x13) + sqr(x4 - x14))*b34 + sqrt( sqr(x3 - x15) + sqr(x4 - x16))*b35 + sqrt(sqr(x3 - x17) + sqr(x4 - x18))* b36 + sqrt(sqr(x3 - x19) + sqr(x4 - x20))*b37 + sqrt(sqr(x5 - x7) + sqr(x6 - x8))*b38 + sqrt(sqr(x5 - x9) + sqr(x6 - x10))*b39 + sqrt(sqr(x5 - x11) + sqr(x6 - x12))*b40 + sqrt(sqr(x5 - x13) + sqr(x6 - x14))*b41 + sqrt( sqr(x5 - x15) + sqr(x6 - x16))*b42 + sqrt(sqr(x5 - x17) + sqr(x6 - x18))* b43 + sqrt(sqr(x5 - x19) + sqr(x6 - x20))*b44 + sqrt(sqr(x7 - x9) + sqr(x8 - x10))*b45 + sqrt(sqr(x7 - x11) + sqr(x8 - x12))*b46 + sqrt(sqr(x7 - x13 ) + sqr(x8 - x14))*b47 + sqrt(sqr(x7 - x15) + sqr(x8 - x16))*b48 + sqrt( sqr(x7 - x17) + sqr(x8 - x18))*b49 + sqrt(sqr(x7 - x19) + sqr(x8 - x20))* b50 + sqrt(sqr(x9 - x11) + sqr(x10 - x12))*b51 + sqrt(sqr(x9 - x13) + sqr( x10 - x14))*b52 + sqrt(sqr(x9 - x15) + sqr(x10 - x16))*b53 + sqrt(sqr(x9 - x17) + sqr(x10 - x18))*b54 + sqrt(sqr(x9 - x19) + sqr(x10 - x20))*b55 + sqrt(sqr(x11 - x13) + sqr(x12 - x14))*b56 + sqrt(sqr(x11 - x15) + sqr( x12 - x16))*b57 + sqrt(sqr(x11 - x17) + sqr(x12 - x18))*b58 + sqrt(sqr(x11 - x19) + sqr(x12 - x20))*b59 + sqrt(sqr(x13 - x15) + sqr(x14 - x16))*b60 + sqrt(sqr(x13 - x17) + sqr(x14 - x18))*b61 + sqrt(sqr(x13 - x19) + sqr( x14 - x20))*b62 + sqrt(sqr(x15 - x17) + sqr(x16 - x18))*b63 + sqrt(sqr(x15 - x19) + sqr(x16 - x20))*b64 + sqrt(sqr(x17 - x19) + sqr(x18 - x20))*b65 - objvar =E= 0; e2.. 0.444444444444444*sqr(x1) - 62.6666666666667*x1 + 0.0236686390532544*sqr( x2) - 0.63905325443787*x2 =L= -2212.31360946746; e3.. 0.0204081632653061*sqr(x3) - 4.73469387755102*x3 + 0.0330578512396694*sqr( x4) - 5.38842975206612*x4 =L= -493.190757294653; e4.. 0.0110803324099723*sqr(x5) - 1.14127423822715*x5 + 0.0493827160493827*sqr( x6) - 6.66666666666667*x6 =L= -253.387811634349; e5.. 0.04*sqr(x7) - 7.84*x7 + 0.0625*sqr(x8) - 8*x8 =L= -639.16; e6.. 0.0177777777777778*sqr(x9) - 3.11111111111111*x9 + 0.013840830449827*sqr( x10) - 0.235294117647059*x10 =L= -136.111111111111; e7.. 0.0090702947845805*sqr(x11) - 1.4421768707483*x11 + 0.04*sqr(x12) - 7.68* x12 =L= -424.966530612245; e8.. 0.0330578512396694*sqr(x13) - 3.27272727272727*x13 + 0.0625*sqr(x14) - 7.125*x14 =L= -283.0625; e9.. 0.0177777777777778*sqr(x15) - 2.57777777777778*x15 + 0.0090702947845805* sqr(x16) - 1.80498866213152*x16 =L= -182.242630385488; e10.. 0.16*sqr(x17) - 38.56*x17 + 0.00826446280991736*sqr(x18) - 0.512396694214876*x18 =L= -2330.18214876033; e11.. 0.0330578512396694*sqr(x19) - 5.52066115702479*x19 + 0.0236686390532544* sqr(x20) - 1.82248520710059*x20 =L= -264.570443542472; e12.. b21 + b22 + b23 + b24 + b25 + b26 + b27 + b28 + b29 =E= 2; e13.. b21 + b30 + b31 + b32 + b33 + b34 + b35 + b36 + b37 =E= 2; e14.. b22 + b30 + b38 + b39 + b40 + b41 + b42 + b43 + b44 =E= 2; e15.. b23 + b31 + b38 + b45 + b46 + b47 + b48 + b49 + b50 =E= 2; e16.. b24 + b32 + b39 + b45 + b51 + b52 + b53 + b54 + b55 =E= 2; e17.. b25 + b33 + b40 + b46 + b51 + b56 + b57 + b58 + b59 =E= 2; e18.. b26 + b34 + b41 + b47 + b52 + b56 + b60 + b61 + b62 =E= 2; e19.. b27 + b35 + b42 + b48 + b53 + b57 + b60 + b63 + b64 =E= 2; e20.. b28 + b36 + b43 + b49 + b54 + b58 + b61 + b63 + b65 =E= 2; e21.. b29 + b37 + b44 + b50 + b55 + b59 + b62 + b64 + b65 =E= 2; e22.. b24 + b29 + b55 =L= 2; * set non-default bounds x1.lo = 69; x1.up = 72; x2.lo = 7; x2.up = 20; x3.lo = 109; x3.up = 123; x4.lo = 76; x4.up = 87; x5.lo = 42; x5.up = 61; x6.lo = 63; x6.up = 72; x7.lo = 93; x7.up = 103; x8.lo = 60; x8.up = 68; x9.lo = 80; x9.up = 95; x10.up = 17; x11.lo = 69; x11.up = 90; x12.lo = 91; x12.up = 101; x13.lo = 44; x13.up = 55; x14.lo = 53; x14.up = 61; x15.lo = 65; x15.up = 80; x16.lo = 89; x16.up = 110; x17.lo = 118; x17.up = 123; x18.lo = 20; x18.up = 42; x19.lo = 78; x19.up = 89; x20.lo = 32; x20.up = 45; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f