MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance wastewater05m1
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 223.40281320 (ANTIGONE) 229.70083910 (BARON) 229.70083930 (COUENNE) 229.70083940 (GUROBI) 202.74418570 (LINDO) 229.70083920 (SCIP) |
Referencesⓘ | Castro, Pedro M, Matos, Henrique A, and Novais, Augusto Q, An efficient heuristic procedure for the optimal design of wastewater treatment systems, Resources, Conservation and Recycling, 50:2, 2007, 158-185. Castro, Pedro M, Teles, João P, and Novais, Augusto Q, Linear program-based algorithm for the optimal design of wastewater treatment systems, Clean Technologies and Environmental Policy, 11:1, 2009, 83-93. |
Sourceⓘ | ANTIGONE test library model Other_MIQCQP/castro_etal_2007_wts_Ex05_M1.gms |
Applicationⓘ | Waste Water Treatment |
Added to libraryⓘ | 15 Aug 2014 |
Problem typeⓘ | QCP |
#Variablesⓘ | 46 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 33 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 3 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 40 |
#Linear Constraintsⓘ | 28 |
#Quadratic Constraintsⓘ | 12 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 211 |
#Nonlinear Nonzeros in Jacobianⓘ | 90 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 90 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 6 |
Minimal blocksize in Hessian of Lagrangianⓘ | 4 |
Maximal blocksize in Hessian of Lagrangianⓘ | 7 |
Average blocksize in Hessian of Lagrangianⓘ | 5.5 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-03 |
Maximal coefficientⓘ | 1.6780e+04 |
Infeasibility of initial pointⓘ | 56.5 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 41 29 0 12 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 47 47 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 215 125 90 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41; e1.. - x44 - x45 - x46 + objvar =E= 0; e2.. - x28 - x34 - x35 - x36 =E= -13.1; e3.. - x29 - x37 - x38 - x39 =E= -32.7; e4.. - x30 - x40 - x41 - x42 =E= -56.5; e5.. - x19 - x22 - x25 - x34 - x37 - x40 + x44 =E= 0; e6.. - x20 - x23 - x26 - x35 - x38 - x41 + x45 =E= 0; e7.. - x21 - x24 - x27 - x36 - x39 - x42 + x46 =E= 0; e8.. - x19 - x20 - x21 - x31 + x44 =E= 0; e9.. - x22 - x23 - x24 - x32 + x45 =E= 0; e10.. - x25 - x26 - x27 - x33 + x46 =E= 0; e11.. - x28 - x29 - x30 - x31 - x32 - x33 + x43 =E= 0; e12.. x19*x10 + x22*x13 + x25*x16 - x44*x1 + 10*x34 + 110*x37 + 100*x40 =E= 0; e13.. x19*x11 + x22*x14 + x25*x17 - x44*x2 + 390*x34 + 16780*x37 + 25*x40 =E= 0 ; e14.. x19*x12 + x22*x15 + x25*x18 - x44*x3 + 25*x34 + 40*x37 + 35*x40 =E= 0; e15.. x20*x10 + x23*x13 + x26*x16 - x45*x4 + 10*x35 + 110*x38 + 100*x41 =E= 0; e16.. x20*x11 + x23*x14 + x26*x17 - x45*x5 + 390*x35 + 16780*x38 + 25*x41 =E= 0 ; e17.. x20*x12 + x23*x15 + x26*x18 - x45*x6 + 25*x35 + 40*x38 + 35*x41 =E= 0; e18.. x21*x10 + x24*x13 + x27*x16 - x46*x7 + 10*x36 + 110*x39 + 100*x42 =E= 0; e19.. x21*x11 + x24*x14 + x27*x17 - x46*x8 + 390*x36 + 16780*x39 + 25*x42 =E= 0 ; e20.. x21*x12 + x24*x15 + x27*x18 - x46*x9 + 25*x36 + 40*x39 + 35*x42 =E= 0; e21.. x1 =L= 20000; e22.. x2 =L= 20000; e23.. x3 =L= 20000; e24.. x4 =L= 20000; e25.. x5 =L= 20000; e26.. x6 =L= 20000; e27.. x7 =L= 20000; e28.. x8 =L= 20000; e29.. x9 =L= 20000; e30.. - x1 + x10 =E= 0; e31.. - 0.001*x2 + x11 =E= 0; e32.. - x3 + x12 =E= 0; e33.. - 0.1*x4 + x13 =E= 0; e34.. - 0.1*x5 + x14 =E= 0; e35.. - 0.03*x6 + x15 =E= 0; e36.. - 0.05*x7 + x16 =E= 0; e37.. - x8 + x17 =E= 0; e38.. - 0.8*x9 + x18 =E= 0; e39.. x31*x10 + x32*x13 + x33*x16 + 10*x28 + 110*x29 + 100*x30 - 2*x43 =L= 0; e40.. x31*x11 + x32*x14 + x33*x17 + 390*x28 + 16780*x29 + 25*x30 - 2*x43 =L= 0; e41.. x31*x12 + x32*x15 + x33*x18 + 25*x28 + 40*x29 + 35*x30 - 5*x43 =L= 0; * set non-default bounds x1.up = 1000000; x2.up = 1000000; x3.up = 1000000; x4.up = 1000000; x5.up = 1000000; x6.up = 1000000; x7.up = 1000000; x8.up = 1000000; x9.up = 1000000; x10.up = 1000000; x11.up = 1000000; x12.up = 1000000; x13.up = 1000000; x14.up = 1000000; x15.up = 1000000; x16.up = 1000000; x17.up = 1000000; x18.up = 1000000; x19.up = 1000000; x20.up = 1000000; x21.up = 1000000; x22.up = 1000000; x23.up = 1000000; x24.up = 1000000; x25.up = 1000000; x26.up = 1000000; x27.up = 1000000; x28.up = 1000000; x29.up = 1000000; x30.up = 1000000; x31.up = 1000000; x32.up = 1000000; x33.up = 1000000; x34.up = 1000000; x35.up = 1000000; x36.up = 1000000; x37.up = 1000000; x38.up = 1000000; x39.up = 1000000; x40.up = 1000000; x41.up = 1000000; x42.up = 1000000; x43.up = 1000000; x44.up = 1000000; x45.up = 1000000; x46.up = 1000000; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f