MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance wastewater11m1
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 2127.11538200 (ANTIGONE) 2127.11538200 (BARON) 1579.13954400 (COUENNE) 2127.11538500 (GUROBI) 1697.21732400 (LINDO) 2126.91776800 (SCIP) |
Referencesⓘ | Castro, Pedro M, Matos, Henrique A, and Novais, Augusto Q, An efficient heuristic procedure for the optimal design of wastewater treatment systems, Resources, Conservation and Recycling, 50:2, 2007, 158-185. Castro, Pedro M, Teles, João P, and Novais, Augusto Q, Linear program-based algorithm for the optimal design of wastewater treatment systems, Clean Technologies and Environmental Policy, 11:1, 2009, 83-93. |
Sourceⓘ | ANTIGONE test library model Other_MIQCQP/castro_etal_2007_wts_Ex11_M1.gms |
Applicationⓘ | Waste Water Treatment |
Added to libraryⓘ | 15 Aug 2014 |
Problem typeⓘ | QCP |
#Variablesⓘ | 118 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 77 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 7 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 42 |
#Linear Constraintsⓘ | 34 |
#Quadratic Constraintsⓘ | 8 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 395 |
#Nonlinear Nonzeros in Jacobianⓘ | 126 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 126 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 14 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 9 |
Average blocksize in Hessian of Lagrangianⓘ | 5.5 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-01 |
Maximal coefficientⓘ | 5.0000e+02 |
Infeasibility of initial pointⓘ | 450 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 43 35 0 8 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 119 119 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 403 277 126 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103 ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116 ,x117,x118,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51 ,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68 ,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85 ,x86,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101 ,x102,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114 ,x115,x116,x117,x118; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43; e1.. - x112 - x113 - x114 - x115 - x116 - x117 - x118 + objvar =E= 0; e2.. - x64 - x76 - x77 - x78 - x79 - x80 - x81 - x82 =E= -80; e3.. - x65 - x83 - x84 - x85 - x86 - x87 - x88 - x89 =E= -450; e4.. - x66 - x90 - x91 - x92 - x93 - x94 - x95 - x96 =E= -230; e5.. - x67 - x97 - x98 - x99 - x100 - x101 - x102 - x103 =E= -90; e6.. - x68 - x104 - x105 - x106 - x107 - x108 - x109 - x110 =E= -330; e7.. - x15 - x22 - x29 - x36 - x43 - x50 - x57 - x76 - x83 - x90 - x97 - x104 + x112 =E= 0; e8.. - x16 - x23 - x30 - x37 - x44 - x51 - x58 - x77 - x84 - x91 - x98 - x105 + x113 =E= 0; e9.. - x17 - x24 - x31 - x38 - x45 - x52 - x59 - x78 - x85 - x92 - x99 - x106 + x114 =E= 0; e10.. - x18 - x25 - x32 - x39 - x46 - x53 - x60 - x79 - x86 - x93 - x100 - x107 + x115 =E= 0; e11.. - x19 - x26 - x33 - x40 - x47 - x54 - x61 - x80 - x87 - x94 - x101 - x108 + x116 =E= 0; e12.. - x20 - x27 - x34 - x41 - x48 - x55 - x62 - x81 - x88 - x95 - x102 - x109 + x117 =E= 0; e13.. - x21 - x28 - x35 - x42 - x49 - x56 - x63 - x82 - x89 - x96 - x103 - x110 + x118 =E= 0; e14.. - x15 - x16 - x17 - x18 - x19 - x20 - x21 - x69 + x112 =E= 0; e15.. - x22 - x23 - x24 - x25 - x26 - x27 - x28 - x70 + x113 =E= 0; e16.. - x29 - x30 - x31 - x32 - x33 - x34 - x35 - x71 + x114 =E= 0; e17.. - x36 - x37 - x38 - x39 - x40 - x41 - x42 - x72 + x115 =E= 0; e18.. - x43 - x44 - x45 - x46 - x47 - x48 - x49 - x73 + x116 =E= 0; e19.. - x50 - x51 - x52 - x53 - x54 - x55 - x56 - x74 + x117 =E= 0; e20.. - x57 - x58 - x59 - x60 - x61 - x62 - x63 - x75 + x118 =E= 0; e21.. - x64 - x65 - x66 - x67 - x68 - x69 - x70 - x71 - x72 - x73 - x74 - x75 + x111 =E= 0; e22.. x15*x8 + x22*x9 + x29*x10 + x36*x11 + x43*x12 + x50*x13 + x57*x14 - x112* x1 + 12*x76 + 50*x83 + 500*x90 + 400*x97 + 120*x104 =E= 0; e23.. x16*x8 + x23*x9 + x30*x10 + x37*x11 + x44*x12 + x51*x13 + x58*x14 - x113* x2 + 12*x77 + 50*x84 + 500*x91 + 400*x98 + 120*x105 =E= 0; e24.. x17*x8 + x24*x9 + x31*x10 + x38*x11 + x45*x12 + x52*x13 + x59*x14 - x114* x3 + 12*x78 + 50*x85 + 500*x92 + 400*x99 + 120*x106 =E= 0; e25.. x18*x8 + x25*x9 + x32*x10 + x39*x11 + x46*x12 + x53*x13 + x60*x14 - x115* x4 + 12*x79 + 50*x86 + 500*x93 + 400*x100 + 120*x107 =E= 0; e26.. x19*x8 + x26*x9 + x33*x10 + x40*x11 + x47*x12 + x54*x13 + x61*x14 - x116* x5 + 12*x80 + 50*x87 + 500*x94 + 400*x101 + 120*x108 =E= 0; e27.. x20*x8 + x27*x9 + x34*x10 + x41*x11 + x48*x12 + x55*x13 + x62*x14 - x117* x6 + 12*x81 + 50*x88 + 500*x95 + 400*x102 + 120*x109 =E= 0; e28.. x21*x8 + x28*x9 + x35*x10 + x42*x11 + x49*x12 + x56*x13 + x63*x14 - x118* x7 + 12*x82 + 50*x89 + 500*x96 + 400*x103 + 120*x110 =E= 0; e29.. x1 =L= 400; e30.. x2 =L= 100; e31.. x3 =L= 50; e32.. x4 =L= 570; e33.. x5 =L= 100; e34.. x6 =L= 30; e35.. x7 =L= 640; e36.. - 0.9*x1 + x8 =E= 0; e37.. - 0.6*x2 + x9 =E= 0; e38.. - 0.15*x3 + x10 =E= 0; e39.. - 0.26*x4 + x11 =E= 0; e40.. - 0.1*x5 + x12 =E= 0; e41.. - 0.4*x6 + x13 =E= 0; e42.. - 0.3*x7 + x14 =E= 0; e43.. x69*x8 + x70*x9 + x71*x10 + x72*x11 + x73*x12 + x74*x13 + x75*x14 + 12*x64 + 50*x65 + 500*x66 + 400*x67 + 120*x68 - 4*x111 =L= 0; * set non-default bounds x1.up = 1000000; x2.up = 1000000; x3.up = 1000000; x4.up = 1000000; x5.up = 1000000; x6.up = 1000000; x7.up = 1000000; x8.up = 1000000; x9.up = 1000000; x10.up = 1000000; x11.up = 1000000; x12.up = 1000000; x13.up = 1000000; x14.up = 1000000; x15.up = 1000000; x16.up = 1000000; x17.up = 1000000; x18.up = 1000000; x19.up = 1000000; x20.up = 1000000; x21.up = 1000000; x22.up = 1000000; x23.up = 1000000; x24.up = 1000000; x25.up = 1000000; x26.up = 1000000; x27.up = 1000000; x28.up = 1000000; x29.up = 1000000; x30.up = 1000000; x31.up = 1000000; x32.up = 1000000; x33.up = 1000000; x34.up = 1000000; x35.up = 1000000; x36.up = 1000000; x37.up = 1000000; x38.up = 1000000; x39.up = 1000000; x40.up = 1000000; x41.up = 1000000; x42.up = 1000000; x43.up = 1000000; x44.up = 1000000; x45.up = 1000000; x46.up = 1000000; x47.up = 1000000; x48.up = 1000000; x49.up = 1000000; x50.up = 1000000; x51.up = 1000000; x52.up = 1000000; x53.up = 1000000; x54.up = 1000000; x55.up = 1000000; x56.up = 1000000; x57.up = 1000000; x58.up = 1000000; x59.up = 1000000; x60.up = 1000000; x61.up = 1000000; x62.up = 1000000; x63.up = 1000000; x64.up = 1000000; x65.up = 1000000; x66.up = 1000000; x67.up = 1000000; x68.up = 1000000; x69.up = 1000000; x70.up = 1000000; x71.up = 1000000; x72.up = 1000000; x73.up = 1000000; x74.up = 1000000; x75.up = 1000000; x76.up = 1000000; x77.up = 1000000; x78.up = 1000000; x79.up = 1000000; x80.up = 1000000; x81.up = 1000000; x82.up = 1000000; x83.up = 1000000; x84.up = 1000000; x85.up = 1000000; x86.up = 1000000; x87.up = 1000000; x88.up = 1000000; x89.up = 1000000; x90.up = 1000000; x91.up = 1000000; x92.up = 1000000; x93.up = 1000000; x94.up = 1000000; x95.up = 1000000; x96.up = 1000000; x97.up = 1000000; x98.up = 1000000; x99.up = 1000000; x100.up = 1000000; x101.up = 1000000; x102.up = 1000000; x103.up = 1000000; x104.up = 1000000; x105.up = 1000000; x106.up = 1000000; x107.up = 1000000; x108.up = 1000000; x109.up = 1000000; x110.up = 1000000; x111.up = 1000000; x112.up = 1000000; x113.up = 1000000; x114.up = 1000000; x115.up = 1000000; x116.up = 1000000; x117.up = 1000000; x118.up = 1000000; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f