MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance wastewater13m1
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 1564.95798200 (ANTIGONE) 1564.95798200 (BARON) 1275.32284300 (COUENNE) 1564.95798300 (GUROBI) 1140.01801800 (LINDO) 1443.98031200 (SCIP) |
Referencesⓘ | Castro, Pedro M, Matos, Henrique A, and Novais, Augusto Q, An efficient heuristic procedure for the optimal design of wastewater treatment systems, Resources, Conservation and Recycling, 50:2, 2007, 158-185. Castro, Pedro M, Teles, João P, and Novais, Augusto Q, Linear program-based algorithm for the optimal design of wastewater treatment systems, Clean Technologies and Environmental Policy, 11:1, 2009, 83-93. |
Sourceⓘ | ANTIGONE test library model Other_MIQCQP/castro_etal_2007_wts_Ex13_M1.gms |
Applicationⓘ | Waste Water Treatment |
Added to libraryⓘ | 15 Aug 2014 |
Problem typeⓘ | QCP |
#Variablesⓘ | 382 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 285 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 15 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 83 |
#Linear Constraintsⓘ | 67 |
#Quadratic Constraintsⓘ | 16 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 1355 |
#Nonlinear Nonzeros in Jacobianⓘ | 510 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 510 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 30 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 17 |
Average blocksize in Hessian of Lagrangianⓘ | 9.5 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 5.0000e-02 |
Maximal coefficientⓘ | 5.0000e+02 |
Infeasibility of initial pointⓘ | 530 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 84 68 0 16 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 383 383 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 1371 861 510 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103 ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116 ,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129 ,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142 ,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155 ,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168 ,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180,x181 ,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193,x194 ,x195,x196,x197,x198,x199,x200,x201,x202,x203,x204,x205,x206,x207 ,x208,x209,x210,x211,x212,x213,x214,x215,x216,x217,x218,x219,x220 ,x221,x222,x223,x224,x225,x226,x227,x228,x229,x230,x231,x232,x233 ,x234,x235,x236,x237,x238,x239,x240,x241,x242,x243,x244,x245,x246 ,x247,x248,x249,x250,x251,x252,x253,x254,x255,x256,x257,x258,x259 ,x260,x261,x262,x263,x264,x265,x266,x267,x268,x269,x270,x271,x272 ,x273,x274,x275,x276,x277,x278,x279,x280,x281,x282,x283,x284,x285 ,x286,x287,x288,x289,x290,x291,x292,x293,x294,x295,x296,x297,x298 ,x299,x300,x301,x302,x303,x304,x305,x306,x307,x308,x309,x310,x311 ,x312,x313,x314,x315,x316,x317,x318,x319,x320,x321,x322,x323,x324 ,x325,x326,x327,x328,x329,x330,x331,x332,x333,x334,x335,x336,x337 ,x338,x339,x340,x341,x342,x343,x344,x345,x346,x347,x348,x349,x350 ,x351,x352,x353,x354,x355,x356,x357,x358,x359,x360,x361,x362,x363 ,x364,x365,x366,x367,x368,x369,x370,x371,x372,x373,x374,x375,x376 ,x377,x378,x379,x380,x381,x382,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51 ,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68 ,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85 ,x86,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101 ,x102,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114 ,x115,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127 ,x128,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140 ,x141,x142,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153 ,x154,x155,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166 ,x167,x168,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179 ,x180,x181,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192 ,x193,x194,x195,x196,x197,x198,x199,x200,x201,x202,x203,x204,x205 ,x206,x207,x208,x209,x210,x211,x212,x213,x214,x215,x216,x217,x218 ,x219,x220,x221,x222,x223,x224,x225,x226,x227,x228,x229,x230,x231 ,x232,x233,x234,x235,x236,x237,x238,x239,x240,x241,x242,x243,x244 ,x245,x246,x247,x248,x249,x250,x251,x252,x253,x254,x255,x256,x257 ,x258,x259,x260,x261,x262,x263,x264,x265,x266,x267,x268,x269,x270 ,x271,x272,x273,x274,x275,x276,x277,x278,x279,x280,x281,x282,x283 ,x284,x285,x286,x287,x288,x289,x290,x291,x292,x293,x294,x295,x296 ,x297,x298,x299,x300,x301,x302,x303,x304,x305,x306,x307,x308,x309 ,x310,x311,x312,x313,x314,x315,x316,x317,x318,x319,x320,x321,x322 ,x323,x324,x325,x326,x327,x328,x329,x330,x331,x332,x333,x334,x335 ,x336,x337,x338,x339,x340,x341,x342,x343,x344,x345,x346,x347,x348 ,x349,x350,x351,x352,x353,x354,x355,x356,x357,x358,x359,x360,x361 ,x362,x363,x364,x365,x366,x367,x368,x369,x370,x371,x372,x373,x374 ,x375,x376,x377,x378,x379,x380,x381,x382; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84; e1.. - x368 - x369 - x370 - x371 - x372 - x373 - x374 - x375 - x376 - x377 - x378 - x379 - x380 - x381 - x382 + objvar =E= 0; e2.. - x256 - x277 - x278 - x279 - x280 - x281 - x282 - x283 - x284 - x285 - x286 - x287 - x288 - x289 - x290 - x291 =E= -90; e3.. - x257 - x292 - x293 - x294 - x295 - x296 - x297 - x298 - x299 - x300 - x301 - x302 - x303 - x304 - x305 - x306 =E= -50; e4.. - x258 - x307 - x308 - x309 - x310 - x311 - x312 - x313 - x314 - x315 - x316 - x317 - x318 - x319 - x320 - x321 =E= -200; e5.. - x259 - x322 - x323 - x324 - x325 - x326 - x327 - x328 - x329 - x330 - x331 - x332 - x333 - x334 - x335 - x336 =E= -240; e6.. - x260 - x337 - x338 - x339 - x340 - x341 - x342 - x343 - x344 - x345 - x346 - x347 - x348 - x349 - x350 - x351 =E= -530; e7.. - x261 - x352 - x353 - x354 - x355 - x356 - x357 - x358 - x359 - x360 - x361 - x362 - x363 - x364 - x365 - x366 =E= -70; e8.. - x31 - x46 - x61 - x76 - x91 - x106 - x121 - x136 - x151 - x166 - x181 - x196 - x211 - x226 - x241 - x277 - x292 - x307 - x322 - x337 - x352 + x368 =E= 0; e9.. - x32 - x47 - x62 - x77 - x92 - x107 - x122 - x137 - x152 - x167 - x182 - x197 - x212 - x227 - x242 - x278 - x293 - x308 - x323 - x338 - x353 + x369 =E= 0; e10.. - x33 - x48 - x63 - x78 - x93 - x108 - x123 - x138 - x153 - x168 - x183 - x198 - x213 - x228 - x243 - x279 - x294 - x309 - x324 - x339 - x354 + x370 =E= 0; e11.. - x34 - x49 - x64 - x79 - x94 - x109 - x124 - x139 - x154 - x169 - x184 - x199 - x214 - x229 - x244 - x280 - x295 - x310 - x325 - x340 - x355 + x371 =E= 0; e12.. - x35 - x50 - x65 - x80 - x95 - x110 - x125 - x140 - x155 - x170 - x185 - x200 - x215 - x230 - x245 - x281 - x296 - x311 - x326 - x341 - x356 + x372 =E= 0; e13.. - x36 - x51 - x66 - x81 - x96 - x111 - x126 - x141 - x156 - x171 - x186 - x201 - x216 - x231 - x246 - x282 - x297 - x312 - x327 - x342 - x357 + x373 =E= 0; e14.. - x37 - x52 - x67 - x82 - x97 - x112 - x127 - x142 - x157 - x172 - x187 - x202 - x217 - x232 - x247 - x283 - x298 - x313 - x328 - x343 - x358 + x374 =E= 0; e15.. - x38 - x53 - x68 - x83 - x98 - x113 - x128 - x143 - x158 - x173 - x188 - x203 - x218 - x233 - x248 - x284 - x299 - x314 - x329 - x344 - x359 + x375 =E= 0; e16.. - x39 - x54 - x69 - x84 - x99 - x114 - x129 - x144 - x159 - x174 - x189 - x204 - x219 - x234 - x249 - x285 - x300 - x315 - x330 - x345 - x360 + x376 =E= 0; e17.. - x40 - x55 - x70 - x85 - x100 - x115 - x130 - x145 - x160 - x175 - x190 - x205 - x220 - x235 - x250 - x286 - x301 - x316 - x331 - x346 - x361 + x377 =E= 0; e18.. - x41 - x56 - x71 - x86 - x101 - x116 - x131 - x146 - x161 - x176 - x191 - x206 - x221 - x236 - x251 - x287 - x302 - x317 - x332 - x347 - x362 + x378 =E= 0; e19.. - x42 - x57 - x72 - x87 - x102 - x117 - x132 - x147 - x162 - x177 - x192 - x207 - x222 - x237 - x252 - x288 - x303 - x318 - x333 - x348 - x363 + x379 =E= 0; e20.. - x43 - x58 - x73 - x88 - x103 - x118 - x133 - x148 - x163 - x178 - x193 - x208 - x223 - x238 - x253 - x289 - x304 - x319 - x334 - x349 - x364 + x380 =E= 0; e21.. - x44 - x59 - x74 - x89 - x104 - x119 - x134 - x149 - x164 - x179 - x194 - x209 - x224 - x239 - x254 - x290 - x305 - x320 - x335 - x350 - x365 + x381 =E= 0; e22.. - x45 - x60 - x75 - x90 - x105 - x120 - x135 - x150 - x165 - x180 - x195 - x210 - x225 - x240 - x255 - x291 - x306 - x321 - x336 - x351 - x366 + x382 =E= 0; e23.. - x31 - x32 - x33 - x34 - x35 - x36 - x37 - x38 - x39 - x40 - x41 - x42 - x43 - x44 - x45 - x262 + x368 =E= 0; e24.. - x46 - x47 - x48 - x49 - x50 - x51 - x52 - x53 - x54 - x55 - x56 - x57 - x58 - x59 - x60 - x263 + x369 =E= 0; e25.. - x61 - x62 - x63 - x64 - x65 - x66 - x67 - x68 - x69 - x70 - x71 - x72 - x73 - x74 - x75 - x264 + x370 =E= 0; e26.. - x76 - x77 - x78 - x79 - x80 - x81 - x82 - x83 - x84 - x85 - x86 - x87 - x88 - x89 - x90 - x265 + x371 =E= 0; e27.. - x91 - x92 - x93 - x94 - x95 - x96 - x97 - x98 - x99 - x100 - x101 - x102 - x103 - x104 - x105 - x266 + x372 =E= 0; e28.. - x106 - x107 - x108 - x109 - x110 - x111 - x112 - x113 - x114 - x115 - x116 - x117 - x118 - x119 - x120 - x267 + x373 =E= 0; e29.. - x121 - x122 - x123 - x124 - x125 - x126 - x127 - x128 - x129 - x130 - x131 - x132 - x133 - x134 - x135 - x268 + x374 =E= 0; e30.. - x136 - x137 - x138 - x139 - x140 - x141 - x142 - x143 - x144 - x145 - x146 - x147 - x148 - x149 - x150 - x269 + x375 =E= 0; e31.. - x151 - x152 - x153 - x154 - x155 - x156 - x157 - x158 - x159 - x160 - x161 - x162 - x163 - x164 - x165 - x270 + x376 =E= 0; e32.. - x166 - x167 - x168 - x169 - x170 - x171 - x172 - x173 - x174 - x175 - x176 - x177 - x178 - x179 - x180 - x271 + x377 =E= 0; e33.. - x181 - x182 - x183 - x184 - x185 - x186 - x187 - x188 - x189 - x190 - x191 - x192 - x193 - x194 - x195 - x272 + x378 =E= 0; e34.. - x196 - x197 - x198 - x199 - x200 - x201 - x202 - x203 - x204 - x205 - x206 - x207 - x208 - x209 - x210 - x273 + x379 =E= 0; e35.. - x211 - x212 - x213 - x214 - x215 - x216 - x217 - x218 - x219 - x220 - x221 - x222 - x223 - x224 - x225 - x274 + x380 =E= 0; e36.. - x226 - x227 - x228 - x229 - x230 - x231 - x232 - x233 - x234 - x235 - x236 - x237 - x238 - x239 - x240 - x275 + x381 =E= 0; e37.. - x241 - x242 - x243 - x244 - x245 - x246 - x247 - x248 - x249 - x250 - x251 - x252 - x253 - x254 - x255 - x276 + x382 =E= 0; e38.. - x256 - x257 - x258 - x259 - x260 - x261 - x262 - x263 - x264 - x265 - x266 - x267 - x268 - x269 - x270 - x271 - x272 - x273 - x274 - x275 - x276 + x367 =E= 0; e39.. x31*x16 + x46*x17 + x61*x18 + x76*x19 + x91*x20 + x106*x21 + x121*x22 + x136*x23 + x151*x24 + x166*x25 + x181*x26 + x196*x27 + x211*x28 + x226* x29 + x241*x30 - x368*x1 + 12*x277 + 350*x292 + 500*x307 + 400*x322 + 50*x337 + 140*x352 =E= 0; e40.. x32*x16 + x47*x17 + x62*x18 + x77*x19 + x92*x20 + x107*x21 + x122*x22 + x137*x23 + x152*x24 + x167*x25 + x182*x26 + x197*x27 + x212*x28 + x227* x29 + x242*x30 - x369*x2 + 12*x278 + 350*x293 + 500*x308 + 400*x323 + 50*x338 + 140*x353 =E= 0; e41.. x33*x16 + x48*x17 + x63*x18 + x78*x19 + x93*x20 + x108*x21 + x123*x22 + x138*x23 + x153*x24 + x168*x25 + x183*x26 + x198*x27 + x213*x28 + x228* x29 + x243*x30 - x370*x3 + 12*x279 + 350*x294 + 500*x309 + 400*x324 + 50*x339 + 140*x354 =E= 0; e42.. x34*x16 + x49*x17 + x64*x18 + x79*x19 + x94*x20 + x109*x21 + x124*x22 + x139*x23 + x154*x24 + x169*x25 + x184*x26 + x199*x27 + x214*x28 + x229* x29 + x244*x30 - x371*x4 + 12*x280 + 350*x295 + 500*x310 + 400*x325 + 50*x340 + 140*x355 =E= 0; e43.. x35*x16 + x50*x17 + x65*x18 + x80*x19 + x95*x20 + x110*x21 + x125*x22 + x140*x23 + x155*x24 + x170*x25 + x185*x26 + x200*x27 + x215*x28 + x230* x29 + x245*x30 - x372*x5 + 12*x281 + 350*x296 + 500*x311 + 400*x326 + 50*x341 + 140*x356 =E= 0; e44.. x36*x16 + x51*x17 + x66*x18 + x81*x19 + x96*x20 + x111*x21 + x126*x22 + x141*x23 + x156*x24 + x171*x25 + x186*x26 + x201*x27 + x216*x28 + x231* x29 + x246*x30 - x373*x6 + 12*x282 + 350*x297 + 500*x312 + 400*x327 + 50*x342 + 140*x357 =E= 0; e45.. x37*x16 + x52*x17 + x67*x18 + x82*x19 + x97*x20 + x112*x21 + x127*x22 + x142*x23 + x157*x24 + x172*x25 + x187*x26 + x202*x27 + x217*x28 + x232* x29 + x247*x30 - x374*x7 + 12*x283 + 350*x298 + 500*x313 + 400*x328 + 50*x343 + 140*x358 =E= 0; e46.. x38*x16 + x53*x17 + x68*x18 + x83*x19 + x98*x20 + x113*x21 + x128*x22 + x143*x23 + x158*x24 + x173*x25 + x188*x26 + x203*x27 + x218*x28 + x233* x29 + x248*x30 - x375*x8 + 12*x284 + 350*x299 + 500*x314 + 400*x329 + 50*x344 + 140*x359 =E= 0; e47.. x39*x16 + x54*x17 + x69*x18 + x84*x19 + x99*x20 + x114*x21 + x129*x22 + x144*x23 + x159*x24 + x174*x25 + x189*x26 + x204*x27 + x219*x28 + x234* x29 + x249*x30 - x376*x9 + 12*x285 + 350*x300 + 500*x315 + 400*x330 + 50*x345 + 140*x360 =E= 0; e48.. x40*x16 + x55*x17 + x70*x18 + x85*x19 + x100*x20 + x115*x21 + x130*x22 + x145*x23 + x160*x24 + x175*x25 + x190*x26 + x205*x27 + x220*x28 + x235* x29 + x250*x30 - x377*x10 + 12*x286 + 350*x301 + 500*x316 + 400*x331 + 50*x346 + 140*x361 =E= 0; e49.. x41*x16 + x56*x17 + x71*x18 + x86*x19 + x101*x20 + x116*x21 + x131*x22 + x146*x23 + x161*x24 + x176*x25 + x191*x26 + x206*x27 + x221*x28 + x236* x29 + x251*x30 - x378*x11 + 12*x287 + 350*x302 + 500*x317 + 400*x332 + 50*x347 + 140*x362 =E= 0; e50.. x42*x16 + x57*x17 + x72*x18 + x87*x19 + x102*x20 + x117*x21 + x132*x22 + x147*x23 + x162*x24 + x177*x25 + x192*x26 + x207*x27 + x222*x28 + x237* x29 + x252*x30 - x379*x12 + 12*x288 + 350*x303 + 500*x318 + 400*x333 + 50*x348 + 140*x363 =E= 0; e51.. x43*x16 + x58*x17 + x73*x18 + x88*x19 + x103*x20 + x118*x21 + x133*x22 + x148*x23 + x163*x24 + x178*x25 + x193*x26 + x208*x27 + x223*x28 + x238* x29 + x253*x30 - x380*x13 + 12*x289 + 350*x304 + 500*x319 + 400*x334 + 50*x349 + 140*x364 =E= 0; e52.. x44*x16 + x59*x17 + x74*x18 + x89*x19 + x104*x20 + x119*x21 + x134*x22 + x149*x23 + x164*x24 + x179*x25 + x194*x26 + x209*x27 + x224*x28 + x239* x29 + x254*x30 - x381*x14 + 12*x290 + 350*x305 + 500*x320 + 400*x335 + 50*x350 + 140*x365 =E= 0; e53.. x45*x16 + x60*x17 + x75*x18 + x90*x19 + x105*x20 + x120*x21 + x135*x22 + x150*x23 + x165*x24 + x180*x25 + x195*x26 + x210*x27 + x225*x28 + x240* x29 + x255*x30 - x382*x15 + 12*x291 + 350*x306 + 500*x321 + 400*x336 + 50*x351 + 140*x366 =E= 0; e54.. x1 =L= 300; e55.. x2 =L= 10; e56.. x3 =L= 500; e57.. x4 =L= 570; e58.. x5 =L= 100; e59.. x6 =L= 300; e60.. x7 =L= 200; e61.. x8 =L= 47; e62.. x9 =L= 200; e63.. x10 =L= 250; e64.. x11 =L= 136; e65.. x12 =L= 50; e66.. x13 =L= 100; e67.. x14 =L= 270; e68.. x15 =L= 10; e69.. - 0.05*x1 + x16 =E= 0; e70.. - 0.8*x2 + x17 =E= 0; e71.. - 0.15*x3 + x18 =E= 0; e72.. - 0.26*x4 + x19 =E= 0; e73.. - 0.9*x5 + x20 =E= 0; e74.. - 0.4*x6 + x21 =E= 0; e75.. - 0.33*x7 + x22 =E= 0; e76.. - 0.3*x8 + x23 =E= 0; e77.. - 0.5*x9 + x24 =E= 0; e78.. - 0.5*x10 + x25 =E= 0; e79.. - 0.7*x11 + x26 =E= 0; e80.. - 0.12*x12 + x27 =E= 0; e81.. - 0.15*x13 + x28 =E= 0; e82.. - 0.26*x14 + x29 =E= 0; e83.. - 0.55*x15 + x30 =E= 0; e84.. x262*x16 + x263*x17 + x264*x18 + x265*x19 + x266*x20 + x267*x21 + x268* x22 + x269*x23 + x270*x24 + x271*x25 + x272*x26 + x273*x27 + x274*x28 + x275*x29 + x276*x30 + 12*x256 + 350*x257 + 500*x258 + 400*x259 + 50*x260 + 140*x261 - 4*x367 =L= 0; * set non-default bounds x1.up = 1000000; x2.up = 1000000; x3.up = 1000000; x4.up = 1000000; x5.up = 1000000; x6.up = 1000000; x7.up = 1000000; x8.up = 1000000; x9.up = 1000000; x10.up = 1000000; x11.up = 1000000; x12.up = 1000000; x13.up = 1000000; x14.up = 1000000; x15.up = 1000000; x16.up = 1000000; x17.up = 1000000; x18.up = 1000000; x19.up = 1000000; x20.up = 1000000; x21.up = 1000000; x22.up = 1000000; x23.up = 1000000; x24.up = 1000000; x25.up = 1000000; x26.up = 1000000; x27.up = 1000000; x28.up = 1000000; x29.up = 1000000; x30.up = 1000000; x31.up = 1000000; x32.up = 1000000; x33.up = 1000000; x34.up = 1000000; x35.up = 1000000; x36.up = 1000000; x37.up = 1000000; x38.up = 1000000; x39.up = 1000000; x40.up = 1000000; x41.up = 1000000; x42.up = 1000000; x43.up = 1000000; x44.up = 1000000; x45.up = 1000000; x46.up = 1000000; x47.up = 1000000; x48.up = 1000000; x49.up = 1000000; x50.up = 1000000; x51.up = 1000000; x52.up = 1000000; x53.up = 1000000; x54.up = 1000000; x55.up = 1000000; x56.up = 1000000; x57.up = 1000000; x58.up = 1000000; x59.up = 1000000; x60.up = 1000000; x61.up = 1000000; x62.up = 1000000; x63.up = 1000000; x64.up = 1000000; x65.up = 1000000; x66.up = 1000000; x67.up = 1000000; x68.up = 1000000; x69.up = 1000000; x70.up = 1000000; x71.up = 1000000; x72.up = 1000000; x73.up = 1000000; x74.up = 1000000; x75.up = 1000000; x76.up = 1000000; x77.up = 1000000; x78.up = 1000000; x79.up = 1000000; x80.up = 1000000; x81.up = 1000000; x82.up = 1000000; x83.up = 1000000; x84.up = 1000000; x85.up = 1000000; x86.up = 1000000; x87.up = 1000000; x88.up = 1000000; x89.up = 1000000; x90.up = 1000000; x91.up = 1000000; x92.up = 1000000; x93.up = 1000000; x94.up = 1000000; x95.up = 1000000; x96.up = 1000000; x97.up = 1000000; x98.up = 1000000; x99.up = 1000000; x100.up = 1000000; x101.up = 1000000; x102.up = 1000000; x103.up = 1000000; x104.up = 1000000; x105.up = 1000000; x106.up = 1000000; x107.up = 1000000; x108.up = 1000000; x109.up = 1000000; x110.up = 1000000; x111.up = 1000000; x112.up = 1000000; x113.up = 1000000; x114.up = 1000000; x115.up = 1000000; x116.up = 1000000; x117.up = 1000000; x118.up = 1000000; x119.up = 1000000; x120.up = 1000000; x121.up = 1000000; x122.up = 1000000; x123.up = 1000000; x124.up = 1000000; x125.up = 1000000; x126.up = 1000000; x127.up = 1000000; x128.up = 1000000; x129.up = 1000000; x130.up = 1000000; x131.up = 1000000; x132.up = 1000000; x133.up = 1000000; x134.up = 1000000; x135.up = 1000000; x136.up = 1000000; x137.up = 1000000; x138.up = 1000000; x139.up = 1000000; x140.up = 1000000; x141.up = 1000000; x142.up = 1000000; x143.up = 1000000; x144.up = 1000000; x145.up = 1000000; x146.up = 1000000; x147.up = 1000000; x148.up = 1000000; x149.up = 1000000; x150.up = 1000000; x151.up = 1000000; x152.up = 1000000; x153.up = 1000000; x154.up = 1000000; x155.up = 1000000; x156.up = 1000000; x157.up = 1000000; x158.up = 1000000; x159.up = 1000000; x160.up = 1000000; x161.up = 1000000; x162.up = 1000000; x163.up = 1000000; x164.up = 1000000; x165.up = 1000000; x166.up = 1000000; x167.up = 1000000; x168.up = 1000000; x169.up = 1000000; x170.up = 1000000; x171.up = 1000000; x172.up = 1000000; x173.up = 1000000; x174.up = 1000000; x175.up = 1000000; x176.up = 1000000; x177.up = 1000000; x178.up = 1000000; x179.up = 1000000; x180.up = 1000000; x181.up = 1000000; x182.up = 1000000; x183.up = 1000000; x184.up = 1000000; x185.up = 1000000; x186.up = 1000000; x187.up = 1000000; x188.up = 1000000; x189.up = 1000000; x190.up = 1000000; x191.up = 1000000; x192.up = 1000000; x193.up = 1000000; x194.up = 1000000; x195.up = 1000000; x196.up = 1000000; x197.up = 1000000; x198.up = 1000000; x199.up = 1000000; x200.up = 1000000; x201.up = 1000000; x202.up = 1000000; x203.up = 1000000; x204.up = 1000000; x205.up = 1000000; x206.up = 1000000; x207.up = 1000000; x208.up = 1000000; x209.up = 1000000; x210.up = 1000000; x211.up = 1000000; x212.up = 1000000; x213.up = 1000000; x214.up = 1000000; x215.up = 1000000; x216.up = 1000000; x217.up = 1000000; x218.up = 1000000; x219.up = 1000000; x220.up = 1000000; x221.up = 1000000; x222.up = 1000000; x223.up = 1000000; x224.up = 1000000; x225.up = 1000000; x226.up = 1000000; x227.up = 1000000; x228.up = 1000000; x229.up = 1000000; x230.up = 1000000; x231.up = 1000000; x232.up = 1000000; x233.up = 1000000; x234.up = 1000000; x235.up = 1000000; x236.up = 1000000; x237.up = 1000000; x238.up = 1000000; x239.up = 1000000; x240.up = 1000000; x241.up = 1000000; x242.up = 1000000; x243.up = 1000000; x244.up = 1000000; x245.up = 1000000; x246.up = 1000000; x247.up = 1000000; x248.up = 1000000; x249.up = 1000000; x250.up = 1000000; x251.up = 1000000; x252.up = 1000000; x253.up = 1000000; x254.up = 1000000; x255.up = 1000000; x256.up = 1000000; x257.up = 1000000; x258.up = 1000000; x259.up = 1000000; x260.up = 1000000; x261.up = 1000000; x262.up = 1000000; x263.up = 1000000; x264.up = 1000000; x265.up = 1000000; x266.up = 1000000; x267.up = 1000000; x268.up = 1000000; x269.up = 1000000; x270.up = 1000000; x271.up = 1000000; x272.up = 1000000; x273.up = 1000000; x274.up = 1000000; x275.up = 1000000; x276.up = 1000000; x277.up = 1000000; x278.up = 1000000; x279.up = 1000000; x280.up = 1000000; x281.up = 1000000; x282.up = 1000000; x283.up = 1000000; x284.up = 1000000; x285.up = 1000000; x286.up = 1000000; x287.up = 1000000; x288.up = 1000000; x289.up = 1000000; x290.up = 1000000; x291.up = 1000000; x292.up = 1000000; x293.up = 1000000; x294.up = 1000000; x295.up = 1000000; x296.up = 1000000; x297.up = 1000000; x298.up = 1000000; x299.up = 1000000; x300.up = 1000000; x301.up = 1000000; x302.up = 1000000; x303.up = 1000000; x304.up = 1000000; x305.up = 1000000; x306.up = 1000000; x307.up = 1000000; x308.up = 1000000; x309.up = 1000000; x310.up = 1000000; x311.up = 1000000; x312.up = 1000000; x313.up = 1000000; x314.up = 1000000; x315.up = 1000000; x316.up = 1000000; x317.up = 1000000; x318.up = 1000000; x319.up = 1000000; x320.up = 1000000; x321.up = 1000000; x322.up = 1000000; x323.up = 1000000; x324.up = 1000000; x325.up = 1000000; x326.up = 1000000; x327.up = 1000000; x328.up = 1000000; x329.up = 1000000; x330.up = 1000000; x331.up = 1000000; x332.up = 1000000; x333.up = 1000000; x334.up = 1000000; x335.up = 1000000; x336.up = 1000000; x337.up = 1000000; x338.up = 1000000; x339.up = 1000000; x340.up = 1000000; x341.up = 1000000; x342.up = 1000000; x343.up = 1000000; x344.up = 1000000; x345.up = 1000000; x346.up = 1000000; x347.up = 1000000; x348.up = 1000000; x349.up = 1000000; x350.up = 1000000; x351.up = 1000000; x352.up = 1000000; x353.up = 1000000; x354.up = 1000000; x355.up = 1000000; x356.up = 1000000; x357.up = 1000000; x358.up = 1000000; x359.up = 1000000; x360.up = 1000000; x361.up = 1000000; x362.up = 1000000; x363.up = 1000000; x364.up = 1000000; x365.up = 1000000; x366.up = 1000000; x367.up = 1000000; x368.up = 1000000; x369.up = 1000000; x370.up = 1000000; x371.up = 1000000; x372.up = 1000000; x373.up = 1000000; x374.up = 1000000; x375.up = 1000000; x376.up = 1000000; x377.up = 1000000; x378.up = 1000000; x379.up = 1000000; x380.up = 1000000; x381.up = 1000000; x382.up = 1000000; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f