MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance water4
| Formatsⓘ | ams gms mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 907.01696090 (BARON) 660.07417580 (COUENNE) 907.01680530 (GUROBI) 611.89377370 (LINDO) 907.01699590 (SCIP) 0.00000000 (SHOT) 907.01059000 (XPRESS) |
| Referencesⓘ | Brooke, Anthony, Drud, Arne S, and Meeraus, Alexander, Modeling Systems and Nonlinear Programming in a Research Environment. In Ragavan, R and Rohde, S M, Eds, Computers in Engineering, Vol. III, ACME, 1985. Drud, Arne S and Rosenborg, A, Dimensioning Water Distribution Networks, Masters thesis, Institute of Mathematical Statistics and Operations Research, Technical University of Denmark, 1973. In Danish. |
| Sourceⓘ | modified GAMS Model Library model waterx |
| Applicationⓘ | Water Network Design |
| Added to libraryⓘ | 01 May 2001 |
| Problem typeⓘ | MBNLP |
| #Variablesⓘ | 195 |
| #Binary Variablesⓘ | 126 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 46 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 3 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 137 |
| #Linear Constraintsⓘ | 122 |
| #Quadratic Constraintsⓘ | 1 |
| #Polynomial Constraintsⓘ | 14 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 753 |
| #Nonlinear Nonzeros in Jacobianⓘ | 46 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 116 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 28 |
| #Blocks in Hessian of Lagrangianⓘ | 16 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
| Average blocksize in Hessian of Lagrangianⓘ | 2.875 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 1.3750e-02 |
| Maximal coefficientⓘ | 6.3468e+04 |
| Infeasibility of initial pointⓘ | 9717 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 138 54 14 70 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 196 70 126 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 757 711 46 0
*
* Solve m using MINLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53
,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69
,objvar,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85
,b86,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101
,b102,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114
,b115,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127
,b128,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140
,b141,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153
,b154,b155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166
,b167,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179
,b180,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192
,b193,b194,b195,b196;
Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17
,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x65,x66;
Binary Variables b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85
,b86,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101
,b102,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114
,b115,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127
,b128,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140
,b141,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153
,b154,b155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166
,b167,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179
,b180,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192
,b193,b194,b195,b196;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
,e130,e131,e132,e133,e134,e135,e136,e137,e138;
e1.. - x1 - x2 - x3 + x15 + x16 + x17 + x65 =E= 0;
e2.. - x4 - x5 - x6 - x7 + x18 + x19 + x20 + x21 + x66 =E= 0;
e3.. x1 + x4 - x8 - x9 - x10 - x11 - x15 - x18 + x22 + x23 + x24 + x25
=E= 1.212;
e4.. x2 + x8 + x12 - x16 - x22 - x26 =E= 0.452;
e5.. x9 - x12 + x13 - x23 + x26 - x27 =E= 0.245;
e6.. x5 + x10 - x13 - x14 - x19 - x24 + x27 + x28 =E= 0.652;
e7.. x6 + x14 - x20 - x28 =E= 0.252;
e8.. x3 + x7 + x11 - x17 - x21 - x25 =E= 0.456;
e9.. x29 - 38721.1970117411*b99 - 2543.8701482414*b100
- 207.747320703761*b101 - 23.9314504121258*b102 - 1.5722267648148*b103
- 0.181112645550961*b104 - 0.0390863672545667*b105 =E= 0;
e10.. x30 - 32510.4890865135*b106 - 2135.84468132099*b107
- 174.425573683688*b108 - 20.0929521164322*b109 - 1.32004857865156*b110
- 0.152062982061963*b111 - 0.0328170876451919*b112 =E= 0;
e11.. x31 - 63468.4628982673*b113 - 4169.69361956223*b114
- 340.521578201805*b115 - 39.2263796008983*b116 - 2.57705917665854*b117
- 0.296864304610023*b118 - 0.0640670186196026*b119 =E= 0;
e12.. x32 - 50797.5773435889*b120 - 3337.25325093014*b121
- 272.539627020641*b122 - 31.3951994533022*b123 - 2.06257339263358*b124
- 0.237598120158509*b125 - 0.0512766370081929*b126 =E= 0;
e13.. x33 - 59165.7349698592*b127 - 3887.01689524085*b128
- 317.436542928413*b129 - 36.5670992066393*b130 - 2.40235218067626*b131
- 0.27673893405488*b132 - 0.0597237127048799*b133 =E= 0;
e14.. x34 - 32977.2294678044*b134 - 2166.50816836621*b135
- 176.929733450444*b136 - 20.3814187742893*b137 - 1.339*b138
- 0.154246090843839*b139 - 0.0332882297421199*b140 =E= 0;
e15.. x35 - 33843.9321019273*b141 - 2223.4480134252*b142
- 181.579774357788*b143 - 20.9170801874496*b144 - 1.37419139860501*b145
- 0.158299963634093*b146 - 0.0341631060391402*b147 =E= 0;
e16.. x36 - 31810.181054648*b148 - 2089.8364782095*b149
- 170.668274619734*b150 - 19.660130090483*b151 - 1.2916134290104*b152
- 0.148787395299671*b153 - 0.0321101751776739*b154 =E= 0;
e17.. x37 - 39461.9459070343*b155 - 2592.53519858857*b156
- 211.721593458417*b157 - 24.3892667200816*b158 - 1.60230396616872*b159
- 0.184577388442944*b160 - 0.0398341019735132*b161 =E= 0;
e18.. x38 - 32977.2294678044*b162 - 2166.50816836621*b163
- 176.929733450444*b164 - 20.3814187742893*b165 - 1.339*b166
- 0.154246090843839*b167 - 0.0332882297421199*b168 =E= 0;
e19.. x39 - 52785.5148814787*b169 - 3467.85497167945*b170
- 283.205327698691*b171 - 32.6238347301504*b172 - 2.14329116080854*b173
- 0.246896402610059*b174 - 0.0532833223041444*b175 =E= 0;
e20.. x40 - 30677.4142839491*b176 - 2015.41699236491*b177
- 164.590743970989*b178 - 18.9600290116536*b179 - 1.24561882211213*b180
- 0.143489047044288*b181 - 0.0309667255575633*b182 =E= 0;
e21.. x41 - 28361.2795383154*b183 - 1863.25366856746*b184
- 152.164196629274*b185 - 17.5285530220005*b186 - 1.15157500841239*b187
- 0.132655670919396*b188 - 0.0286287479053886*b189 =E= 0;
e22.. x42 - 50797.5773435889*b190 - 3337.25325093014*b191
- 272.539627020641*b192 - 31.3951994533022*b193 - 2.06257339263358*b194
- 0.237598120158509*b195 - 0.0512766370081929*b196 =E= 0;
e23.. -(x1 + x15)*(x1 - x15)*x29 + x43 - x45 - x51 =E= 0;
e24.. -(x2 + x16)*(x2 - x16)*x30 + x43 - x46 - x52 =E= 0;
e25.. -(x3 + x17)*(x3 - x17)*x31 + x43 - x50 - x53 =E= 0;
e26.. -(x4 + x18)*(x4 - x18)*x32 + x44 - x45 - x54 =E= 0;
e27.. -(x5 + x19)*(x5 - x19)*x33 + x44 - x48 - x55 =E= 0;
e28.. -(x6 + x20)*(x6 - x20)*x34 + x44 - x49 - x56 =E= 0;
e29.. -(x7 + x21)*(x7 - x21)*x35 + x44 - x50 - x57 =E= 0;
e30.. -(x8 + x22)*(x8 - x22)*x36 + x45 - x46 - x58 =E= 0;
e31.. -(x9 + x23)*(x9 - x23)*x37 + x45 - x47 - x59 =E= 0;
e32.. -(x10 + x24)*(x10 - x24)*x38 + x45 - x48 - x60 =E= 0;
e33.. -(x11 + x25)*(x11 - x25)*x39 + x45 - x50 - x61 =E= 0;
e34.. -(x12 + x26)*(x12 - x26)*x40 - x46 + x47 - x62 =E= 0;
e35.. -(x13 + x27)*(x13 - x27)*x41 - x47 + x48 - x63 =E= 0;
e36.. -(x14 + x28)*(x14 - x28)*x42 + x48 - x49 - x64 =E= 0;
e37.. x51 + 12*b85 =L= 12;
e38.. x52 + 12*b86 =L= 12;
e39.. x53 + 12*b87 =L= 12;
e40.. x54 + 12*b88 =L= 12;
e41.. x55 + 12*b89 =L= 12;
e42.. x56 + 12*b90 =L= 12;
e43.. x57 + 12*b91 =L= 12;
e44.. x58 + 12*b92 =L= 12;
e45.. x59 + 12*b93 =L= 12;
e46.. x60 + 12*b94 =L= 12;
e47.. x61 + 12*b95 =L= 12;
e48.. x62 + 12*b96 =L= 12;
e49.. x63 + 12*b97 =L= 12;
e50.. x64 + 12*b98 =L= 12;
e51.. x51 - 12*b85 =G= -12;
e52.. x52 - 12*b86 =G= -12;
e53.. x53 - 12*b87 =G= -12;
e54.. x54 - 12*b88 =G= -12;
e55.. x55 - 12*b89 =G= -12;
e56.. x56 - 12*b90 =G= -12;
e57.. x57 - 12*b91 =G= -12;
e58.. x58 - 12*b92 =G= -12;
e59.. x59 - 12*b93 =G= -12;
e60.. x60 - 12*b94 =G= -12;
e61.. x61 - 12*b95 =G= -12;
e62.. x62 - 12*b96 =G= -12;
e63.. x63 - 12*b97 =G= -12;
e64.. x64 - 12*b98 =G= -12;
e65.. -(1.02*x65*(-6.5 + x43) + 1.02*x66*(-3.25 + x44)) + x67 =E= 0;
e66.. x68 - 9.11349113439539*b99 - 17.6144733325531*b100
- 32.2986551864818*b101 - 54.4931814987685*b102 - 105.323928905069*b103
- 177.698914733437*b104 - 257.546555368226*b105 - 7.65172765642961*b106
- 14.7891900880288*b107 - 27.118094428506*b108 - 45.7527173518919*b109
- 88.4304387640365*b110 - 149.196798497086*b111 - 216.237232413786*b112
- 14.9380525029139*b113 - 28.8721329260735*b114 - 52.941183552398*b115
- 89.3205462402005*b116 - 172.637944844116*b117 - 291.268810037089*b118
- 422.148209648796*b119 - 11.9558099050809*b120 - 23.1080813747994*b121
- 42.3719709499612*b122 - 71.4885338137291*b123 - 138.172392322055*b124
- 233.119713791557*b125 - 337.870264236031*b126 - 13.9253546563734*b127
- 26.9147996770731*b128 - 49.3521332015331*b129 - 83.2652237802191*b130
- 160.93427229773*b131 - 271.522775764452*b132 - 393.529446744536*b133
- 7.76158051882097*b134 - 15.0015127080393*b135 - 27.5074183079396*b136
- 46.4095712271164*b137 - 89.7*b138 - 151.338758602103*b139
- 219.341665817957*b140 - 7.96556922221359*b141 - 15.3957802311063*b142
- 28.2303641796868*b143 - 47.6293006671023*b144 - 92.0574820424717*b145
- 155.316221319321*b146 - 225.10637081608*b147 - 7.48690188831565*b148
- 14.4706163324673*b149 - 26.5339439013751*b150 - 44.7671586494086*b151
- 86.5255598074927*b152 - 145.982952158506*b153 - 211.579268940989*b154
- 9.28783513744935*b155 - 17.9514438466182*b156 - 32.916538800503*b157
- 55.5356535066454*b158 - 107.338809384118*b159 - 181.098351861986*b160
- 262.473503425068*b161 - 7.76158051882097*b162 - 15.0015127080393*b163
- 27.5074183079396*b164 - 46.4095712271164*b165 - 89.7*b166
- 151.338758602103*b167 - 219.341665817957*b168 - 12.4236944883441*b169
- 24.0124044704238*b170 - 44.0301766363479*b171 - 74.2862014846846*b172
- 143.579699122125*b173 - 242.242736071415*b174 - 351.092646411238*b175
- 7.22029184733547*b176 - 13.9553148538372*b177 - 25.5890649679471*b178
- 43.1729913716576*b179 - 83.44436769489*b180 - 140.784470672041*b181
- 204.044889780639*b182 - 6.67516217420068*b183 - 12.9016931463472*b184
- 23.6570989315674*b185 - 39.913444642481*b186 - 77.1443452237428*b187
- 130.155289178744*b188 - 188.639567333459*b189 - 11.9558099050809*b190
- 23.1080813747994*b191 - 42.3719709499612*b192 - 71.4885338137291*b193
- 138.172392322055*b194 - 233.119713791557*b195 - 337.870264236031*b196
=E= 0;
e67.. - 0.2*x65 - 0.17*x66 + x69 =E= 0;
e68.. - 10*x67 - x68 - 10*x69 + objvar =E= 0;
e69.. x1 - 2*b71 =L= 0;
e70.. x2 - 2*b72 =L= 0;
e71.. x3 - 2*b73 =L= 0;
e72.. x4 - 2*b74 =L= 0;
e73.. x5 - 2*b75 =L= 0;
e74.. x6 - 2*b76 =L= 0;
e75.. x7 - 2*b77 =L= 0;
e76.. x8 - 2*b78 =L= 0;
e77.. x9 - 2*b79 =L= 0;
e78.. x10 - 2*b80 =L= 0;
e79.. x11 - 2*b81 =L= 0;
e80.. x12 - 2*b82 =L= 0;
e81.. x13 - 2*b83 =L= 0;
e82.. x14 - 2*b84 =L= 0;
e83.. x15 + 2*b71 =L= 2;
e84.. x16 + 2*b72 =L= 2;
e85.. x17 + 2*b73 =L= 2;
e86.. x18 + 2*b74 =L= 2;
e87.. x19 + 2*b75 =L= 2;
e88.. x20 + 2*b76 =L= 2;
e89.. x21 + 2*b77 =L= 2;
e90.. x22 + 2*b78 =L= 2;
e91.. x23 + 2*b79 =L= 2;
e92.. x24 + 2*b80 =L= 2;
e93.. x25 + 2*b81 =L= 2;
e94.. x26 + 2*b82 =L= 2;
e95.. x27 + 2*b83 =L= 2;
e96.. x28 + 2*b84 =L= 2;
e97.. x1 + x15 - 2*b85 =L= 0;
e98.. x2 + x16 - 2*b86 =L= 0;
e99.. x3 + x17 - 2*b87 =L= 0;
e100.. x4 + x18 - 2*b88 =L= 0;
e101.. x5 + x19 - 2*b89 =L= 0;
e102.. x6 + x20 - 2*b90 =L= 0;
e103.. x7 + x21 - 2*b91 =L= 0;
e104.. x8 + x22 - 2*b92 =L= 0;
e105.. x9 + x23 - 2*b93 =L= 0;
e106.. x10 + x24 - 2*b94 =L= 0;
e107.. x11 + x25 - 2*b95 =L= 0;
e108.. x12 + x26 - 2*b96 =L= 0;
e109.. x13 + x27 - 2*b97 =L= 0;
e110.. x14 + x28 - 2*b98 =L= 0;
e111.. - b85 + b99 + b100 + b101 + b102 + b103 + b104 + b105 =E= 0;
e112.. - b86 + b106 + b107 + b108 + b109 + b110 + b111 + b112 =E= 0;
e113.. - b87 + b113 + b114 + b115 + b116 + b117 + b118 + b119 =E= 0;
e114.. - b88 + b120 + b121 + b122 + b123 + b124 + b125 + b126 =E= 0;
e115.. - b89 + b127 + b128 + b129 + b130 + b131 + b132 + b133 =E= 0;
e116.. - b90 + b134 + b135 + b136 + b137 + b138 + b139 + b140 =E= 0;
e117.. - b91 + b141 + b142 + b143 + b144 + b145 + b146 + b147 =E= 0;
e118.. - b92 + b148 + b149 + b150 + b151 + b152 + b153 + b154 =E= 0;
e119.. - b93 + b155 + b156 + b157 + b158 + b159 + b160 + b161 =E= 0;
e120.. - b94 + b162 + b163 + b164 + b165 + b166 + b167 + b168 =E= 0;
e121.. - b95 + b169 + b170 + b171 + b172 + b173 + b174 + b175 =E= 0;
e122.. - b96 + b176 + b177 + b178 + b179 + b180 + b181 + b182 =E= 0;
e123.. - b97 + b183 + b184 + b185 + b186 + b187 + b188 + b189 =E= 0;
e124.. - b98 + b190 + b191 + b192 + b193 + b194 + b195 + b196 =E= 0;
e125.. x1 + x15 - 0.0176041976445841*b99 - 0.0686820348432157*b100
- 0.240338257044582*b101 - 0.708118780382974*b102 - 2*b103 - 2*b104
- 2*b105 =L= 0;
e126.. x2 + x16 - 0.0192122784105588*b106 - 0.0749558941482069*b107
- 0.262292300976835*b108 - 0.772802909347502*b109 - 2*b110 - 2*b111
- 2*b112 =L= 0;
e127.. x3 + x17 - 0.0137502828767635*b113 - 0.0536461488738445*b114
- 0.187723353667753*b115 - 0.553097263345606*b116 - 2*b117 - 2*b118
- 2*b119 =L= 0;
e128.. x4 + x18 - 0.0153698320860398*b120 - 0.0599647518268192*b121
- 0.209833968534382*b122 - 0.618242703881818*b123 - 2*b124 - 2*b125
- 2*b126 =L= 0;
e129.. x5 + x19 - 0.0142414920290718*b127 - 0.0555625806701283*b128
- 0.194429501479406*b129 - 0.572855870518057*b130 - 2*b131 - 2*b132
- 2*b133 =L= 0;
e130.. x6 + x20 - 0.0190758342372385*b134 - 0.0744235629590588*b135
- 0.260429520550158*b136 - 0.767314520523847*b137 - 2*b138 - 2*b139
- 2*b140 =L= 0;
e131.. x7 + x21 - 0.0188299954674205*b141 - 0.0734644333642121*b142
- 0.257073249355929*b143 - 0.757425796631457*b144 - 2*b145 - 2*b146
- 2*b147 =L= 0;
e132.. x8 + x22 - 0.0194226083350049*b148 - 0.0757764874800376*b149
- 0.265163793814297*b150 - 0.781263310246409*b151 - 2*b152 - 2*b153
- 2*b154 =L= 0;
e133.. x9 + x23 - 0.0174381887671401*b155 - 0.0680343582075014*b156
- 0.238071849619242*b157 - 0.701441168247406*b158 - 2*b159 - 2*b160
- 2*b161 =L= 0;
e134.. x10 + x24 - 0.0190758342372385*b162 - 0.0744235629590588*b163
- 0.260429520550158*b164 - 0.767314520523847*b165 - 2*b166 - 2*b167
- 2*b168 =L= 0;
e135.. x11 + x25 - 0.0150776355652448*b169 - 0.0588247594211735*b170
- 0.205844806180028*b171 - 0.606489265973719*b172 - 2*b173 - 2*b174
- 2*b175 =L= 0;
e136.. x12 + x26 - 0.0197779487583483*b176 - 0.0771628331590627*b177
- 0.270015017353593*b178 - 0.795556675515238*b179 - 2*b180 - 2*b181
- 2*b182 =L= 0;
e137.. x13 + x27 - 0.02056968839856*b183 - 0.0802517719822704*b184
- 0.280824105561038*b185 - 0.827403949655566*b186 - 2*b187 - 2*b188
- 2*b189 =L= 0;
e138.. x14 + x28 - 0.0153698320860398*b190 - 0.0599647518268192*b191
- 0.209833968534382*b192 - 0.618242703881818*b193 - 2*b194 - 2*b195
- 2*b196 =L= 0;
* set non-default bounds
x43.lo = 6.5;
x44.lo = 3.25;
x45.lo = 16.58;
x46.lo = 14.92;
x47.lo = 12.925;
x48.lo = 12.26;
x49.lo = 8.76;
x50.lo = 16.08;
x65.up = 2.5;
x66.up = 6;
* set non-default levels
x43.l = 11.5;
x44.l = 8.25;
x45.l = 21.58;
x46.l = 19.92;
x47.l = 17.925;
x48.l = 17.26;
x49.l = 13.76;
x50.l = 21.08;
x65.l = 0.961470588235294;
x66.l = 2.30752941176471;
b71.l = 0.5;
b72.l = 0.5;
b73.l = 0.5;
b74.l = 0.5;
b75.l = 0.5;
b76.l = 0.5;
b77.l = 0.5;
b78.l = 0.5;
b79.l = 0.5;
b80.l = 0.5;
b81.l = 0.5;
b82.l = 0.5;
b83.l = 0.5;
b84.l = 0.5;
b99.l = 0.142857142857143;
b100.l = 0.142857142857143;
b101.l = 0.142857142857143;
b102.l = 0.142857142857143;
b103.l = 0.142857142857143;
b104.l = 0.142857142857143;
b105.l = 0.142857142857143;
b106.l = 0.142857142857143;
b107.l = 0.142857142857143;
b108.l = 0.142857142857143;
b109.l = 0.142857142857143;
b110.l = 0.142857142857143;
b111.l = 0.142857142857143;
b112.l = 0.142857142857143;
b113.l = 0.142857142857143;
b114.l = 0.142857142857143;
b115.l = 0.142857142857143;
b116.l = 0.142857142857143;
b117.l = 0.142857142857143;
b118.l = 0.142857142857143;
b119.l = 0.142857142857143;
b120.l = 0.142857142857143;
b121.l = 0.142857142857143;
b122.l = 0.142857142857143;
b123.l = 0.142857142857143;
b124.l = 0.142857142857143;
b125.l = 0.142857142857143;
b126.l = 0.142857142857143;
b127.l = 0.142857142857143;
b128.l = 0.142857142857143;
b129.l = 0.142857142857143;
b130.l = 0.142857142857143;
b131.l = 0.142857142857143;
b132.l = 0.142857142857143;
b133.l = 0.142857142857143;
b134.l = 0.142857142857143;
b135.l = 0.142857142857143;
b136.l = 0.142857142857143;
b137.l = 0.142857142857143;
b138.l = 0.142857142857143;
b139.l = 0.142857142857143;
b140.l = 0.142857142857143;
b141.l = 0.142857142857143;
b142.l = 0.142857142857143;
b143.l = 0.142857142857143;
b144.l = 0.142857142857143;
b145.l = 0.142857142857143;
b146.l = 0.142857142857143;
b147.l = 0.142857142857143;
b148.l = 0.142857142857143;
b149.l = 0.142857142857143;
b150.l = 0.142857142857143;
b151.l = 0.142857142857143;
b152.l = 0.142857142857143;
b153.l = 0.142857142857143;
b154.l = 0.142857142857143;
b155.l = 0.142857142857143;
b156.l = 0.142857142857143;
b157.l = 0.142857142857143;
b158.l = 0.142857142857143;
b159.l = 0.142857142857143;
b160.l = 0.142857142857143;
b161.l = 0.142857142857143;
b162.l = 0.142857142857143;
b163.l = 0.142857142857143;
b164.l = 0.142857142857143;
b165.l = 0.142857142857143;
b166.l = 0.142857142857143;
b167.l = 0.142857142857143;
b168.l = 0.142857142857143;
b169.l = 0.142857142857143;
b170.l = 0.142857142857143;
b171.l = 0.142857142857143;
b172.l = 0.142857142857143;
b173.l = 0.142857142857143;
b174.l = 0.142857142857143;
b175.l = 0.142857142857143;
b176.l = 0.142857142857143;
b177.l = 0.142857142857143;
b178.l = 0.142857142857143;
b179.l = 0.142857142857143;
b180.l = 0.142857142857143;
b181.l = 0.142857142857143;
b182.l = 0.142857142857143;
b183.l = 0.142857142857143;
b184.l = 0.142857142857143;
b185.l = 0.142857142857143;
b186.l = 0.142857142857143;
b187.l = 0.142857142857143;
b188.l = 0.142857142857143;
b189.l = 0.142857142857143;
b190.l = 0.142857142857143;
b191.l = 0.142857142857143;
b192.l = 0.142857142857143;
b193.l = 0.142857142857143;
b194.l = 0.142857142857143;
b195.l = 0.142857142857143;
b196.l = 0.142857142857143;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

