MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance waternd_hanoi
Formatsⓘ | ams gms osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 5989665.25000000 (COUENNE) 5809007.69900000 (LINDO) 6109620.90000000 (SCIP) |
Referencesⓘ | D'Ambrosio, Claudia, Bragalli, Cristiana, Lee, Jon, Lodi, Andrea, and Toth, Paolo, Optimal Design of Water Distribution Networks, 2011. Bragalli, Cristiana, D'Ambrosio, Claudia, Lee, Jon, Lodi, Andrea, and Toth, Paolo, On the optimal design of water distribution networks: a practical MINLP approach, Optimization and Engineering, 13, 2012, 219-246. |
Sourceⓘ | water.gms from minlp.org model 134 |
Applicationⓘ | Water Network Design |
Added to libraryⓘ | 25 Sep 2013 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 304 |
#Binary Variablesⓘ | 204 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 100 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 204 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 201 |
#Linear Constraintsⓘ | 167 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 34 |
Operands in Gen. Nonlin. Functionsⓘ | mul signpower vcpower |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 781 |
#Nonlinear Nonzeros in Jacobianⓘ | 136 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 204 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 68 |
#Blocks in Hessian of Lagrangianⓘ | 35 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 66 |
Average blocksize in Hessian of Lagrangianⓘ | 2.857143 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 7.2966e-02 |
Maximal coefficientⓘ | 9.7398e+05 |
Infeasibility of initial pointⓘ | 1.652 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 202 134 34 34 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 305 101 204 0 0 0 0 0 * FX 1 * * Nonzero counts * Total const NL DLL * 986 850 136 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,b101,b102,b103 ,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116 ,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,b129 ,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141,b142 ,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154,b155 ,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167,b168 ,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180,b181 ,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193,b194 ,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205,b206,b207 ,b208,b209,b210,b211,b212,b213,b214,b215,b216,b217,b218,b219,b220 ,b221,b222,b223,b224,b225,b226,b227,b228,b229,b230,b231,b232,b233 ,b234,b235,b236,b237,b238,b239,b240,b241,b242,b243,b244,b245,b246 ,b247,b248,b249,b250,b251,b252,b253,b254,b255,b256,b257,b258,b259 ,b260,b261,b262,b263,b264,b265,b266,b267,b268,b269,b270,b271,b272 ,b273,b274,b275,b276,b277,b278,b279,b280,b281,b282,b283,b284,b285 ,b286,b287,b288,b289,b290,b291,b292,b293,b294,b295,b296,b297,b298 ,b299,b300,b301,b302,b303,b304,objvar; Binary Variables b101,b102,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112 ,b113,b114,b115,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125 ,b126,b127,b128,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138 ,b139,b140,b141,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151 ,b152,b153,b154,b155,b156,b157,b158,b159,b160,b161,b162,b163,b164 ,b165,b166,b167,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177 ,b178,b179,b180,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190 ,b191,b192,b193,b194,b195,b196,b197,b198,b199,b200,b201,b202,b203 ,b204,b205,b206,b207,b208,b209,b210,b211,b212,b213,b214,b215,b216 ,b217,b218,b219,b220,b221,b222,b223,b224,b225,b226,b227,b228,b229 ,b230,b231,b232,b233,b234,b235,b236,b237,b238,b239,b240,b241,b242 ,b243,b244,b245,b246,b247,b248,b249,b250,b251,b252,b253,b254,b255 ,b256,b257,b258,b259,b260,b261,b262,b263,b264,b265,b266,b267,b268 ,b269,b270,b271,b272,b273,b274,b275,b276,b277,b278,b279,b280,b281 ,b282,b283,b284,b285,b286,b287,b288,b289,b290,b291,b292,b293,b294 ,b295,b296,b297,b298,b299,b300,b301,b302,b303,b304; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142 ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155 ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168 ,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181 ,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194 ,e195,e196,e197,e198,e199,e200,e201,e202; e1.. - 4573*b101 - 7040*b102 - 9839*b103 - 12933*b104 - 18075*b105 - 27828*b106 - 61735.5*b107 - 95040*b108 - 132826.5*b109 - 174595.5*b110 - 244012.5*b111 - 375678*b112 - 41157*b113 - 63360*b114 - 88551*b115 - 116397*b116 - 162675*b117 - 250452*b118 - 100606*b119 - 154880*b120 - 216458*b121 - 284526*b122 - 397650*b123 - 612216*b124 - 52589.5*b125 - 80960*b126 - 113148.5*b127 - 148729.5*b128 - 207862.5*b129 - 320022*b130 - 66308.5*b131 - 102080*b132 - 142665.5*b133 - 187528.5*b134 - 262087.5*b135 - 403506*b136 - 20578.5*b137 - 31680*b138 - 44275.5*b139 - 58198.5*b140 - 81337.5*b141 - 125226*b142 - 38870.5*b143 - 59840*b144 - 83631.5*b145 - 109930.5*b146 - 153637.5*b147 - 236538*b148 - 38870.5*b149 - 59840*b150 - 83631.5*b151 - 109930.5*b152 - 153637.5*b153 - 236538*b154 - 36584*b155 - 56320*b156 - 78712*b157 - 103464*b158 - 144600*b159 - 222624*b160 - 43443.5*b161 - 66880*b162 - 93470.5*b163 - 122863.5*b164 - 171712.5*b165 - 264366*b166 - 36584*b167 - 56320*b168 - 78712*b169 - 103464*b170 - 144600*b171 - 222624*b172 - 54876*b173 - 84480*b174 - 118068*b175 - 155196*b176 - 216900*b177 - 333936*b178 - 160055*b179 - 246400*b180 - 344365*b181 - 452655*b182 - 632625*b183 - 973980*b184 - 22865*b185 - 35200*b186 - 49195*b187 - 64665*b188 - 90375*b189 - 139140*b190 - 25151.5*b191 - 38720*b192 - 54114.5*b193 - 71131.5*b194 - 99412.5*b195 - 153054*b196 - 124842.9*b197 - 192192*b198 - 268604.7*b199 - 353070.9*b200 - 493447.5*b201 - 759704.4*b202 - 80027.5*b203 - 123200*b204 - 172182.5*b205 - 226327.5*b206 - 316312.5*b207 - 486990*b208 - 36584*b209 - 56320*b210 - 78712*b211 - 103464*b212 - 144600*b213 - 222624*b214 - 18292*b215 - 28160*b216 - 39356*b217 - 51732*b218 - 72300*b219 - 111312*b220 - 68595*b221 - 105600*b222 - 147585*b223 - 193995*b224 - 271125*b225 - 417420*b226 - 121184.5*b227 - 186560*b228 - 260733.5*b229 - 342724.5*b230 - 478987.5*b231 - 737442*b232 - 22865*b233 - 35200*b234 - 49195*b235 - 64665*b236 - 90375*b237 - 139140*b238 - 56247.9*b239 - 86592*b240 - 121019.7*b241 - 159075.9*b242 - 222322.5*b243 - 342284.4*b244 - 68595*b245 - 105600*b246 - 147585*b247 - 193995*b248 - 271125*b249 - 417420*b250 - 59449*b251 - 91520*b252 - 127907*b253 - 168129*b254 - 234975*b255 - 361764*b256 - 38870.5*b257 - 59840*b258 - 83631.5*b259 - 109930.5*b260 - 153637.5*b261 - 236538*b262 - 13719*b263 - 21120*b264 - 29517*b265 - 38799*b266 - 54225*b267 - 83484*b268 - 34297.5*b269 - 52800*b270 - 73792.5*b271 - 96997.5*b272 - 135562.5*b273 - 208710*b274 - 91460*b275 - 140800*b276 - 196780*b277 - 258660*b278 - 361500*b279 - 556560*b280 - 73168*b281 - 112640*b282 - 157424*b283 - 206928*b284 - 289200*b285 - 445248*b286 - 6859.5*b287 - 10560*b288 - 14758.5*b289 - 19399.5*b290 - 27112.5*b291 - 41742*b292 - 39327.8*b293 - 60544*b294 - 84615.4*b295 - 111223.8*b296 - 155445*b297 - 239320.8*b298 - 43443.5*b299 - 66880*b300 - 93470.5*b301 - 122863.5*b302 - 171712.5*b303 - 264366*b304 + objvar =E= 0; e2.. - x33 + x34 =E= -0.24722; e3.. - x34 + x35 + x36 - x52 =E= -0.23611; e4.. - x35 + x37 =E= -0.03611; e5.. - x37 + x38 =E= -0.20139; e6.. - x38 + x39 =E= -0.27917; e7.. - x39 + x40 =E= -0.375; e8.. - x40 + x41 =E= -0.15278; e9.. - x41 + x42 =E= -0.14583; e10.. - x42 + x43 + x44 =E= -0.14583; e11.. - x43 + x45 =E= -0.13889; e12.. - x45 + x46 =E= -0.15556; e13.. - x46 =E= -0.26111; e14.. - x44 + x47 =E= -0.17083; e15.. - x47 + x48 =E= -0.07778; e16.. - x48 + x49 - x61 =E= -0.08611; e17.. - x49 + x50 =E= -0.24028; e18.. - x50 + x51 =E= -0.37361; e19.. - x51 + x52 =E= -0.01667; e20.. - x36 + x53 + x54 =E= -0.35417; e21.. - x53 + x55 =E= -0.25833; e22.. - x55 =E= -0.13472; e23.. - x54 + x56 + x57 =E= -0.29028; e24.. - x56 + x58 =E= -0.22778; e25.. - x58 + x59 - x66 =E= -0.04722; e26.. - x59 + x60 =E= -0.25; e27.. - x60 + x61 =E= -0.10278; e28.. - x57 + x62 =E= -0.08056; e29.. - x62 + x63 =E= -0.1; e30.. - x63 + x64 =E= -0.1; e31.. - x64 + x65 =E= -0.02917; e32.. - x65 + x66 =E= -0.22361; e33.. SignPower(x33,1.852) - 7.6849192909955*(1.27323954473516*x67)**2.435*(x1 - x2) =E= 0; e34.. SignPower(x34,1.852) - 0.569253280814482*(1.27323954473516*x68)**2.435*( x2 - x3) =E= 0; e35.. SignPower(x35,1.852) - 0.853879921221723*(1.27323954473516*x69)**2.435*( x3 - x4) =E= 0; e36.. SignPower(x36,1.852) - 0.349314513227068*(1.27323954473516*x70)**2.435*( x3 - x20) =E= 0; e37.. SignPower(x37,1.852) - 0.668253851390913*(1.27323954473516*x71)**2.435*( x4 - x5) =E= 0; e38.. SignPower(x38,1.852) - 0.529994433861759*(1.27323954473516*x72)**2.435*( x5 - x6) =E= 0; e39.. SignPower(x39,1.852) - 1.70775984244345*(1.27323954473516*x73)**2.435*(x6 - x7) =E= 0; e40.. SignPower(x40,1.852) - 0.904108151881824*(1.27323954473516*x74)**2.435*( x7 - x8) =E= 0; e41.. SignPower(x41,1.852) - 0.904108151881824*(1.27323954473516*x75)**2.435*( x8 - x9) =E= 0; e42.. SignPower(x42,1.852) - 0.960614911374438*(1.27323954473516*x76)**2.435*( x9 - x10) =E= 0; e43.. SignPower(x43,1.852) - 0.808938872736369*(1.27323954473516*x77)**2.435*( x10 - x11) =E= 0; e44.. SignPower(x44,1.852) - 0.960614911374438*(1.27323954473516*x78)**2.435*( x10 - x14) =E= 0; e45.. SignPower(x45,1.852) - 0.640409940916292*(1.27323954473516*x79)**2.435*( x11 - x12) =E= 0; e46.. SignPower(x46,1.852) - 0.219569122599872*(1.27323954473516*x80)**2.435*( x12 - x13) =E= 0; e47.. SignPower(x47,1.852) - 1.5369838581991*(1.27323954473516*x81)**2.435*(x14 - x15) =E= 0; e48.. SignPower(x48,1.852) - 1.39725805290827*(1.27323954473516*x82)**2.435*( x15 - x16) =E= 0; e49.. SignPower(x49,1.852) - 0.28149887512804*(1.27323954473516*x83)**2.435*( x16 - x17) =E= 0; e50.. SignPower(x50,1.852) - 0.439138245199743*(1.27323954473516*x84)**2.435*( x17 - x18) =E= 0; e51.. SignPower(x51,1.852) - 0.960614911374438*(1.27323954473516*x85)**2.435*( x18 - x19) =E= 0; e52.. SignPower(x52,1.852) - 1.92122982274888*(1.27323954473516*x86)**2.435*( x19 - x3) =E= 0; e53.. SignPower(x53,1.852) - 0.512327952733034*(1.27323954473516*x87)**2.435*( x20 - x21) =E= 0; e54.. SignPower(x54,1.852) - 0.289996954377189*(1.27323954473516*x88)**2.435*( x20 - x23) =E= 0; e55.. SignPower(x55,1.852) - 1.5369838581991*(1.27323954473516*x89)**2.435*(x21 - x22) =E= 0; e56.. SignPower(x56,1.852) - 0.624790186259797*(1.27323954473516*x90)**2.435*( x23 - x24) =E= 0; e57.. SignPower(x57,1.852) - 0.512327952733034*(1.27323954473516*x91)**2.435*( x23 - x28) =E= 0; e58.. SignPower(x58,1.852) - 0.591147637768885*(1.27323954473516*x92)**2.435*( x24 - x25) =E= 0; e59.. SignPower(x59,1.852) - 0.904108151881824*(1.27323954473516*x93)**2.435*( x25 - x26) =E= 0; e60.. SignPower(x60,1.852) - 2.56163976366517*(1.27323954473516*x94)**2.435*( x26 - x27) =E= 0; e61.. SignPower(x61,1.852) - 1.02465590546607*(1.27323954473516*x95)**2.435*( x27 - x16) =E= 0; e62.. SignPower(x62,1.852) - 0.384245964549775*(1.27323954473516*x96)**2.435*( x28 - x29) =E= 0; e63.. SignPower(x63,1.852) - 0.480307455687219*(1.27323954473516*x97)**2.435*( x29 - x30) =E= 0; e64.. SignPower(x64,1.852) - 5.12327952733034*(1.27323954473516*x98)**2.435*( x30 - x31) =E= 0; e65.. SignPower(x65,1.852) - 0.893595266394826*(1.27323954473516*x99)**2.435*( x31 - x32) =E= 0; e66.. SignPower(x66,1.852) - 0.808938872736369*(1.27323954473516*x100)**2.435*( x32 - x25) =E= 0; e67.. x33 - 7*x67 =L= 0; e68.. x34 - 7*x68 =L= 0; e69.. x35 - 3*x69 =L= 0; e70.. x36 - 3*x70 =L= 0; e71.. x37 - 3*x71 =L= 0; e72.. x38 - 2.5*x72 =L= 0; e73.. x39 - 2.5*x73 =L= 0; e74.. x40 - 2*x74 =L= 0; e75.. x41 - 2*x75 =L= 0; e76.. x42 - 2*x76 =L= 0; e77.. x43 - 2*x77 =L= 0; e78.. x44 - 2*x78 =L= 0; e79.. x45 - 2*x79 =L= 0; e80.. x46 - 2*x80 =L= 0; e81.. x47 - 2*x81 =L= 0; e82.. x48 - 2*x82 =L= 0; e83.. x49 - 2*x83 =L= 0; e84.. x50 - 2*x84 =L= 0; e85.. x51 - 3.5*x85 =L= 0; e86.. x52 - 3.5*x86 =L= 0; e87.. x53 - 2*x87 =L= 0; e88.. x54 - 2*x88 =L= 0; e89.. x55 - 2*x89 =L= 0; e90.. x56 - 3*x90 =L= 0; e91.. x57 - 2*x91 =L= 0; e92.. x58 - 2*x92 =L= 0; e93.. x59 - 2*x93 =L= 0; e94.. x60 - 2*x94 =L= 0; e95.. x61 - 2*x95 =L= 0; e96.. x62 - 2*x96 =L= 0; e97.. x63 - 2*x97 =L= 0; e98.. x64 - 2*x98 =L= 0; e99.. x65 - 2*x99 =L= 0; e100.. x66 - 2*x100 =L= 0; e101.. x33 + 7*x67 =G= 0; e102.. x34 + 7*x68 =G= 0; e103.. x35 + 3*x69 =G= 0; e104.. x36 + 3*x70 =G= 0; e105.. x37 + 3*x71 =G= 0; e106.. x38 + 2.5*x72 =G= 0; e107.. x39 + 2.5*x73 =G= 0; e108.. x40 + 2*x74 =G= 0; e109.. x41 + 2*x75 =G= 0; e110.. x42 + 2*x76 =G= 0; e111.. x43 + 2*x77 =G= 0; e112.. x44 + 2*x78 =G= 0; e113.. x45 + 2*x79 =G= 0; e114.. x46 + 2*x80 =G= 0; e115.. x47 + 2*x81 =G= 0; e116.. x48 + 2*x82 =G= 0; e117.. x49 + 2*x83 =G= 0; e118.. x50 + 2*x84 =G= 0; e119.. x51 + 3.5*x85 =G= 0; e120.. x52 + 3.5*x86 =G= 0; e121.. x53 + 2*x87 =G= 0; e122.. x54 + 2*x88 =G= 0; e123.. x55 + 2*x89 =G= 0; e124.. x56 + 3*x90 =G= 0; e125.. x57 + 2*x91 =G= 0; e126.. x58 + 2*x92 =G= 0; e127.. x59 + 2*x93 =G= 0; e128.. x60 + 2*x94 =G= 0; e129.. x61 + 2*x95 =G= 0; e130.. x62 + 2*x96 =G= 0; e131.. x63 + 2*x97 =G= 0; e132.. x64 + 2*x98 =G= 0; e133.. x65 + 2*x99 =G= 0; e134.. x66 + 2*x100 =G= 0; e135.. x67 - 0.0729658769900397*b101 - 0.129717114648959*b102 - 0.202682991638999*b103 - 0.291863507960159*b104 - 0.456036731187748*b105 - 0.810731966555996*b106 =E= 0; e136.. x68 - 0.0729658769900397*b107 - 0.129717114648959*b108 - 0.202682991638999*b109 - 0.291863507960159*b110 - 0.456036731187748*b111 - 0.810731966555996*b112 =E= 0; e137.. x69 - 0.0729658769900397*b113 - 0.129717114648959*b114 - 0.202682991638999*b115 - 0.291863507960159*b116 - 0.456036731187748*b117 - 0.810731966555996*b118 =E= 0; e138.. x70 - 0.0729658769900397*b119 - 0.129717114648959*b120 - 0.202682991638999*b121 - 0.291863507960159*b122 - 0.456036731187748*b123 - 0.810731966555996*b124 =E= 0; e139.. x71 - 0.0729658769900397*b125 - 0.129717114648959*b126 - 0.202682991638999*b127 - 0.291863507960159*b128 - 0.456036731187748*b129 - 0.810731966555996*b130 =E= 0; e140.. x72 - 0.0729658769900397*b131 - 0.129717114648959*b132 - 0.202682991638999*b133 - 0.291863507960159*b134 - 0.456036731187748*b135 - 0.810731966555996*b136 =E= 0; e141.. x73 - 0.0729658769900397*b137 - 0.129717114648959*b138 - 0.202682991638999*b139 - 0.291863507960159*b140 - 0.456036731187748*b141 - 0.810731966555996*b142 =E= 0; e142.. x74 - 0.0729658769900397*b143 - 0.129717114648959*b144 - 0.202682991638999*b145 - 0.291863507960159*b146 - 0.456036731187748*b147 - 0.810731966555996*b148 =E= 0; e143.. x75 - 0.0729658769900397*b149 - 0.129717114648959*b150 - 0.202682991638999*b151 - 0.291863507960159*b152 - 0.456036731187748*b153 - 0.810731966555996*b154 =E= 0; e144.. x76 - 0.0729658769900397*b155 - 0.129717114648959*b156 - 0.202682991638999*b157 - 0.291863507960159*b158 - 0.456036731187748*b159 - 0.810731966555996*b160 =E= 0; e145.. x77 - 0.0729658769900397*b161 - 0.129717114648959*b162 - 0.202682991638999*b163 - 0.291863507960159*b164 - 0.456036731187748*b165 - 0.810731966555996*b166 =E= 0; e146.. x78 - 0.0729658769900397*b167 - 0.129717114648959*b168 - 0.202682991638999*b169 - 0.291863507960159*b170 - 0.456036731187748*b171 - 0.810731966555996*b172 =E= 0; e147.. x79 - 0.0729658769900397*b173 - 0.129717114648959*b174 - 0.202682991638999*b175 - 0.291863507960159*b176 - 0.456036731187748*b177 - 0.810731966555996*b178 =E= 0; e148.. x80 - 0.0729658769900397*b179 - 0.129717114648959*b180 - 0.202682991638999*b181 - 0.291863507960159*b182 - 0.456036731187748*b183 - 0.810731966555996*b184 =E= 0; e149.. x81 - 0.0729658769900397*b185 - 0.129717114648959*b186 - 0.202682991638999*b187 - 0.291863507960159*b188 - 0.456036731187748*b189 - 0.810731966555996*b190 =E= 0; e150.. x82 - 0.0729658769900397*b191 - 0.129717114648959*b192 - 0.202682991638999*b193 - 0.291863507960159*b194 - 0.456036731187748*b195 - 0.810731966555996*b196 =E= 0; e151.. x83 - 0.0729658769900397*b197 - 0.129717114648959*b198 - 0.202682991638999*b199 - 0.291863507960159*b200 - 0.456036731187748*b201 - 0.810731966555996*b202 =E= 0; e152.. x84 - 0.0729658769900397*b203 - 0.129717114648959*b204 - 0.202682991638999*b205 - 0.291863507960159*b206 - 0.456036731187748*b207 - 0.810731966555996*b208 =E= 0; e153.. x85 - 0.0729658769900397*b209 - 0.129717114648959*b210 - 0.202682991638999*b211 - 0.291863507960159*b212 - 0.456036731187748*b213 - 0.810731966555996*b214 =E= 0; e154.. x86 - 0.0729658769900397*b215 - 0.129717114648959*b216 - 0.202682991638999*b217 - 0.291863507960159*b218 - 0.456036731187748*b219 - 0.810731966555996*b220 =E= 0; e155.. x87 - 0.0729658769900397*b221 - 0.129717114648959*b222 - 0.202682991638999*b223 - 0.291863507960159*b224 - 0.456036731187748*b225 - 0.810731966555996*b226 =E= 0; e156.. x88 - 0.0729658769900397*b227 - 0.129717114648959*b228 - 0.202682991638999*b229 - 0.291863507960159*b230 - 0.456036731187748*b231 - 0.810731966555996*b232 =E= 0; e157.. x89 - 0.0729658769900397*b233 - 0.129717114648959*b234 - 0.202682991638999*b235 - 0.291863507960159*b236 - 0.456036731187748*b237 - 0.810731966555996*b238 =E= 0; e158.. x90 - 0.0729658769900397*b239 - 0.129717114648959*b240 - 0.202682991638999*b241 - 0.291863507960159*b242 - 0.456036731187748*b243 - 0.810731966555996*b244 =E= 0; e159.. x91 - 0.0729658769900397*b245 - 0.129717114648959*b246 - 0.202682991638999*b247 - 0.291863507960159*b248 - 0.456036731187748*b249 - 0.810731966555996*b250 =E= 0; e160.. x92 - 0.0729658769900397*b251 - 0.129717114648959*b252 - 0.202682991638999*b253 - 0.291863507960159*b254 - 0.456036731187748*b255 - 0.810731966555996*b256 =E= 0; e161.. x93 - 0.0729658769900397*b257 - 0.129717114648959*b258 - 0.202682991638999*b259 - 0.291863507960159*b260 - 0.456036731187748*b261 - 0.810731966555996*b262 =E= 0; e162.. x94 - 0.0729658769900397*b263 - 0.129717114648959*b264 - 0.202682991638999*b265 - 0.291863507960159*b266 - 0.456036731187748*b267 - 0.810731966555996*b268 =E= 0; e163.. x95 - 0.0729658769900397*b269 - 0.129717114648959*b270 - 0.202682991638999*b271 - 0.291863507960159*b272 - 0.456036731187748*b273 - 0.810731966555996*b274 =E= 0; e164.. x96 - 0.0729658769900397*b275 - 0.129717114648959*b276 - 0.202682991638999*b277 - 0.291863507960159*b278 - 0.456036731187748*b279 - 0.810731966555996*b280 =E= 0; e165.. x97 - 0.0729658769900397*b281 - 0.129717114648959*b282 - 0.202682991638999*b283 - 0.291863507960159*b284 - 0.456036731187748*b285 - 0.810731966555996*b286 =E= 0; e166.. x98 - 0.0729658769900397*b287 - 0.129717114648959*b288 - 0.202682991638999*b289 - 0.291863507960159*b290 - 0.456036731187748*b291 - 0.810731966555996*b292 =E= 0; e167.. x99 - 0.0729658769900397*b293 - 0.129717114648959*b294 - 0.202682991638999*b295 - 0.291863507960159*b296 - 0.456036731187748*b297 - 0.810731966555996*b298 =E= 0; e168.. x100 - 0.0729658769900397*b299 - 0.129717114648959*b300 - 0.202682991638999*b301 - 0.291863507960159*b302 - 0.456036731187748*b303 - 0.810731966555996*b304 =E= 0; e169.. b101 + b102 + b103 + b104 + b105 + b106 =E= 1; e170.. b107 + b108 + b109 + b110 + b111 + b112 =E= 1; e171.. b113 + b114 + b115 + b116 + b117 + b118 =E= 1; e172.. b119 + b120 + b121 + b122 + b123 + b124 =E= 1; e173.. b125 + b126 + b127 + b128 + b129 + b130 =E= 1; e174.. b131 + b132 + b133 + b134 + b135 + b136 =E= 1; e175.. b137 + b138 + b139 + b140 + b141 + b142 =E= 1; e176.. b143 + b144 + b145 + b146 + b147 + b148 =E= 1; e177.. b149 + b150 + b151 + b152 + b153 + b154 =E= 1; e178.. b155 + b156 + b157 + b158 + b159 + b160 =E= 1; e179.. b161 + b162 + b163 + b164 + b165 + b166 =E= 1; e180.. b167 + b168 + b169 + b170 + b171 + b172 =E= 1; e181.. b173 + b174 + b175 + b176 + b177 + b178 =E= 1; e182.. b179 + b180 + b181 + b182 + b183 + b184 =E= 1; e183.. b185 + b186 + b187 + b188 + b189 + b190 =E= 1; e184.. b191 + b192 + b193 + b194 + b195 + b196 =E= 1; e185.. b197 + b198 + b199 + b200 + b201 + b202 =E= 1; e186.. b203 + b204 + b205 + b206 + b207 + b208 =E= 1; e187.. b209 + b210 + b211 + b212 + b213 + b214 =E= 1; e188.. b215 + b216 + b217 + b218 + b219 + b220 =E= 1; e189.. b221 + b222 + b223 + b224 + b225 + b226 =E= 1; e190.. b227 + b228 + b229 + b230 + b231 + b232 =E= 1; e191.. b233 + b234 + b235 + b236 + b237 + b238 =E= 1; e192.. b239 + b240 + b241 + b242 + b243 + b244 =E= 1; e193.. b245 + b246 + b247 + b248 + b249 + b250 =E= 1; e194.. b251 + b252 + b253 + b254 + b255 + b256 =E= 1; e195.. b257 + b258 + b259 + b260 + b261 + b262 =E= 1; e196.. b263 + b264 + b265 + b266 + b267 + b268 =E= 1; e197.. b269 + b270 + b271 + b272 + b273 + b274 =E= 1; e198.. b275 + b276 + b277 + b278 + b279 + b280 =E= 1; e199.. b281 + b282 + b283 + b284 + b285 + b286 =E= 1; e200.. b287 + b288 + b289 + b290 + b291 + b292 =E= 1; e201.. b293 + b294 + b295 + b296 + b297 + b298 =E= 1; e202.. b299 + b300 + b301 + b302 + b303 + b304 =E= 1; * set non-default bounds x1.fx = 100; x2.lo = 30; x2.up = 100; x3.lo = 30; x3.up = 100; x4.lo = 30; x4.up = 100; x5.lo = 30; x5.up = 100; x6.lo = 30; x6.up = 100; x7.lo = 30; x7.up = 100; x8.lo = 30; x8.up = 100; x9.lo = 30; x9.up = 100; x10.lo = 30; x10.up = 100; x11.lo = 30; x11.up = 100; x12.lo = 30; x12.up = 100; x13.lo = 30; x13.up = 100; x14.lo = 30; x14.up = 100; x15.lo = 30; x15.up = 100; x16.lo = 30; x16.up = 100; x17.lo = 30; x17.up = 100; x18.lo = 30; x18.up = 100; x19.lo = 30; x19.up = 100; x20.lo = 30; x20.up = 100; x21.lo = 30; x21.up = 100; x22.lo = 30; x22.up = 100; x23.lo = 30; x23.up = 100; x24.lo = 30; x24.up = 100; x25.lo = 30; x25.up = 100; x26.lo = 30; x26.up = 100; x27.lo = 30; x27.up = 100; x28.lo = 30; x28.up = 100; x29.lo = 30; x29.up = 100; x30.lo = 30; x30.up = 100; x31.lo = 30; x31.up = 100; x32.lo = 30; x32.up = 100; x67.lo = 0.0729658769900397; x67.up = 0.810731966555996; x68.lo = 0.0729658769900397; x68.up = 0.810731966555996; x69.lo = 0.0729658769900397; x69.up = 0.810731966555996; x70.lo = 0.0729658769900397; x70.up = 0.810731966555996; x71.lo = 0.0729658769900397; x71.up = 0.810731966555996; x72.lo = 0.0729658769900397; x72.up = 0.810731966555996; x73.lo = 0.0729658769900397; x73.up = 0.810731966555996; x74.lo = 0.0729658769900397; x74.up = 0.810731966555996; x75.lo = 0.0729658769900397; x75.up = 0.810731966555996; x76.lo = 0.0729658769900397; x76.up = 0.810731966555996; x77.lo = 0.0729658769900397; x77.up = 0.810731966555996; x78.lo = 0.0729658769900397; x78.up = 0.810731966555996; x79.lo = 0.0729658769900397; x79.up = 0.810731966555996; x80.lo = 0.0729658769900397; x80.up = 0.810731966555996; x81.lo = 0.0729658769900397; x81.up = 0.810731966555996; x82.lo = 0.0729658769900397; x82.up = 0.810731966555996; x83.lo = 0.0729658769900397; x83.up = 0.810731966555996; x84.lo = 0.0729658769900397; x84.up = 0.810731966555996; x85.lo = 0.0729658769900397; x85.up = 0.810731966555996; x86.lo = 0.0729658769900397; x86.up = 0.810731966555996; x87.lo = 0.0729658769900397; x87.up = 0.810731966555996; x88.lo = 0.0729658769900397; x88.up = 0.810731966555996; x89.lo = 0.0729658769900397; x89.up = 0.810731966555996; x90.lo = 0.0729658769900397; x90.up = 0.810731966555996; x91.lo = 0.0729658769900397; x91.up = 0.810731966555996; x92.lo = 0.0729658769900397; x92.up = 0.810731966555996; x93.lo = 0.0729658769900397; x93.up = 0.810731966555996; x94.lo = 0.0729658769900397; x94.up = 0.810731966555996; x95.lo = 0.0729658769900397; x95.up = 0.810731966555996; x96.lo = 0.0729658769900397; x96.up = 0.810731966555996; x97.lo = 0.0729658769900397; x97.up = 0.810731966555996; x98.lo = 0.0729658769900397; x98.up = 0.810731966555996; x99.lo = 0.0729658769900397; x99.up = 0.810731966555996; x100.lo = 0.0729658769900397; x100.up = 0.810731966555996; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f