MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance waterund14
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 329.56983790 (ANTIGONE) 323.97749030 (BARON) 328.68856540 (COUENNE) 325.83902000 (GUROBI) 325.49581030 (LINDO) 329.41449440 (SCIP) 10.00000000 (SHOT) |
Referencesⓘ | Castro, Pedro M and Teles, João P, Comparison of global optimization algorithms for the design of water-using networks, Computers and Chemical Engineering, 52, 2013, 249-261. Teles, João P, Castro, Pedro M, and Novais, Augusto Q, LP-based solution strategies for the optimal design of industrial water networks with multiple contaminants, Chemical Engineering Science, 63:2, 2008, 376-394. Teles, João P, Castro, Pedro M, and Matos, Henrique A, Global optimization of water networks design using multiparametric disaggregation, Computers and Chemical Engineering 40, 2012, 132-147. |
Sourceⓘ | ANTIGONE test library model Other_MIQCQP/teles_etal_2009_WUN_Ex14.gms |
Applicationⓘ | Water Network Design |
Added to libraryⓘ | 15 Aug 2014 |
Problem typeⓘ | QCP |
#Variablesⓘ | 125 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 80 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 14 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 135 |
#Linear Constraintsⓘ | 69 |
#Quadratic Constraintsⓘ | 66 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 813 |
#Nonlinear Nonzeros in Jacobianⓘ | 456 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 432 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 4 |
Minimal blocksize in Hessian of Lagrangianⓘ | 20 |
Maximal blocksize in Hessian of Lagrangianⓘ | 20 |
Average blocksize in Hessian of Lagrangianⓘ | 20.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 4.0000e+02 |
Infeasibility of initial pointⓘ | 1.8e+04 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 136 63 18 55 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 126 126 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 828 372 456 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35 ,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52 ,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69 ,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86 ,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102 ,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115 ,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126; Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51 ,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68 ,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85 ,x86,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101 ,x102,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114 ,x115,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136; e1.. objvar - x2 - x3 - x4 - x5 - x6 - x7 - x8 - x9 - x10 - x11 - x12 - x13 - x14 - x15 =E= 0; e2.. - x2 - x9 + x16 - x30 - x37 - x44 - x51 - x58 - x65 - x72 =E= 0; e3.. - x3 - x10 + x17 - x31 - x38 - x45 - x52 - x59 - x66 - x73 =E= 0; e4.. - x4 - x11 + x18 - x32 - x39 - x46 - x53 - x60 - x67 - x74 =E= 0; e5.. - x5 - x12 + x19 - x33 - x40 - x47 - x54 - x61 - x68 - x75 =E= 0; e6.. - x6 - x13 - x34 - x41 - x48 - x55 - x62 - x69 - x76 =E= -20; e7.. - x7 - x14 - x35 - x42 - x49 - x56 - x63 - x70 - x77 =E= -60; e8.. - x8 - x15 - x36 - x43 - x50 - x57 - x64 - x71 - x78 =E= -70; e9.. x16 - x23 - x30 - x31 - x32 - x33 - x34 - x35 - x36 =E= 0; e10.. x17 - x24 - x37 - x38 - x39 - x40 - x41 - x42 - x43 =E= 0; e11.. x18 - x25 - x44 - x45 - x46 - x47 - x48 - x49 - x50 =E= 0; e12.. x19 - x26 - x51 - x52 - x53 - x54 - x55 - x56 - x57 =E= 0; e13.. - x27 - x58 - x59 - x60 - x61 - x62 - x63 - x64 =E= -30; e14.. - x28 - x65 - x66 - x67 - x68 - x69 - x70 - x71 =E= -70; e15.. - x29 - x72 - x73 - x74 - x75 - x76 - x77 - x78 =E= -40; e16.. x16*x79 - (x30*x103 + x37*x109 + x44*x115 + x51*x121) - 15*x9 - 300*x58 - 400*x65 - 90*x72 =E= 0; e17.. x16*x80 - (x30*x104 + x37*x110 + x44*x116 + x51*x122) - 25*x2 - 140*x58 - 155*x65 - 100*x72 =E= 0; e18.. x16*x81 - (x30*x105 + x37*x111 + x44*x117 + x51*x123) - 2*x2 - 200*x58 - 180*x65 - 300*x72 =E= 0; e19.. x16*x82 - (x30*x106 + x37*x112 + x44*x118 + x51*x124) - 4*x2 - 9*x9 - 170*x58 - 220*x65 - 220*x72 =E= 0; e20.. x16*x83 - (x30*x107 + x37*x113 + x44*x119 + x51*x125) - 3*x9 - 130*x58 - 110*x65 - 80*x72 =E= 0; e21.. x16*x84 - (x30*x108 + x37*x114 + x44*x120 + x51*x126) - 2*x2 - 200*x58 - 190*x65 - 115*x72 =E= 0; e22.. x17*x85 - (x31*x103 + x38*x109 + x45*x115 + x52*x121) - 15*x10 - 300*x59 - 400*x66 - 90*x73 =E= 0; e23.. x17*x86 - (x31*x104 + x38*x110 + x45*x116 + x52*x122) - 25*x3 - 140*x59 - 155*x66 - 100*x73 =E= 0; e24.. x17*x87 - (x31*x105 + x38*x111 + x45*x117 + x52*x123) - 2*x3 - 200*x59 - 180*x66 - 300*x73 =E= 0; e25.. x17*x88 - (x31*x106 + x38*x112 + x45*x118 + x52*x124) - 4*x3 - 9*x10 - 170*x59 - 220*x66 - 220*x73 =E= 0; e26.. x17*x89 - (x31*x107 + x38*x113 + x45*x119 + x52*x125) - 3*x10 - 130*x59 - 110*x66 - 80*x73 =E= 0; e27.. x17*x90 - (x31*x108 + x38*x114 + x45*x120 + x52*x126) - 2*x3 - 200*x59 - 190*x66 - 115*x73 =E= 0; e28.. x18*x91 - (x32*x103 + x39*x109 + x46*x115 + x53*x121) - 15*x11 - 300*x60 - 400*x67 - 90*x74 =E= 0; e29.. x18*x92 - (x32*x104 + x39*x110 + x46*x116 + x53*x122) - 25*x4 - 140*x60 - 155*x67 - 100*x74 =E= 0; e30.. x18*x93 - (x32*x105 + x39*x111 + x46*x117 + x53*x123) - 2*x4 - 200*x60 - 180*x67 - 300*x74 =E= 0; e31.. x18*x94 - (x32*x106 + x39*x112 + x46*x118 + x53*x124) - 4*x4 - 9*x11 - 170*x60 - 220*x67 - 220*x74 =E= 0; e32.. x18*x95 - (x32*x107 + x39*x113 + x46*x119 + x53*x125) - 3*x11 - 130*x60 - 110*x67 - 80*x74 =E= 0; e33.. x18*x96 - (x32*x108 + x39*x114 + x46*x120 + x53*x126) - 2*x4 - 200*x60 - 190*x67 - 115*x74 =E= 0; e34.. x19*x97 - (x33*x103 + x40*x109 + x47*x115 + x54*x121) - 15*x12 - 300*x61 - 400*x68 - 90*x75 =E= 0; e35.. x19*x98 - (x33*x104 + x40*x110 + x47*x116 + x54*x122) - 25*x5 - 140*x61 - 155*x68 - 100*x75 =E= 0; e36.. x19*x99 - (x33*x105 + x40*x111 + x47*x117 + x54*x123) - 2*x5 - 200*x61 - 180*x68 - 300*x75 =E= 0; e37.. x19*x100 - (x33*x106 + x40*x112 + x47*x118 + x54*x124) - 4*x5 - 9*x12 - 170*x61 - 220*x68 - 220*x75 =E= 0; e38.. x19*x101 - (x33*x107 + x40*x113 + x47*x119 + x54*x125) - 3*x12 - 130*x61 - 110*x68 - 80*x75 =E= 0; e39.. x19*x102 - (x33*x108 + x40*x114 + x47*x120 + x54*x126) - 2*x5 - 200*x61 - 190*x68 - 115*x75 =E= 0; e40.. -x16*(x103 - x79) =E= -10560; e41.. -x16*(x104 - x80) =E= -4320; e42.. -x16*(x105 - x81) =E= -4560; e43.. -x16*(x106 - x82) =E= -12000; e44.. -x16*(x107 - x83) =E= -3960; e45.. -x16*(x108 - x84) =E= -6000; e46.. -x17*(x109 - x85) =E= -2400; e47.. -x17*(x110 - x86) =E= -3400; e48.. -x17*(x111 - x87) =E= -1150; e49.. -x17*(x112 - x88) =E= -5000; e50.. -x17*(x113 - x89) =E= -2000; e51.. -x17*(x114 - x90) =E= -5000; e52.. -x18*(x115 - x91) =E= -7200; e53.. -x18*(x116 - x92) =E= -2400; e54.. -x18*(x117 - x93) =E= -2880; e55.. -x18*(x118 - x94) =E= -8000; e56.. -x18*(x119 - x95) =E= -4000; e57.. -x18*(x120 - x96) =E= -2400; e58.. -x19*(x121 - x97) =E= -9000; e59.. -x19*(x122 - x98) =E= -14130; e60.. -x19*(x123 - x99) =E= -11700; e61.. -x19*(x124 - x100) =E= -9000; e62.. -x19*(x125 - x101) =E= -5400; e63.. -x19*(x126 - x102) =E= -18000; e64.. x79 =L= 112; e65.. x80 =L= 54; e66.. x81 =L= 12; e67.. x82 =L= 134; e68.. x83 =L= 12; e69.. x84 =L= 30; e70.. x85 =L= 32; e71.. x86 =L= 12; e72.. x87 =L= 47; e73.. x88 =L= 56; e74.. x89 =L= 40; e75.. x90 =L= 100; e76.. x91 =L= 10; e77.. x92 =L= 80; e78.. x93 =L= 54; e79.. x94 =L= 39; e80.. x95 =L= 80; e81.. x96 =L= 60; e82.. x97 =L= 45; e83.. x98 =L= 93; e84.. x99 =L= 70; e85.. x100 =L= 177; e86.. x101 =L= 20; e87.. x102 =L= 20; e88.. x103 =L= 200; e89.. x104 =L= 90; e90.. x105 =L= 50; e91.. x106 =L= 234; e92.. x107 =L= 45; e93.. x108 =L= 80; e94.. x109 =L= 80; e95.. x110 =L= 80; e96.. x111 =L= 70; e97.. x112 =L= 156; e98.. x113 =L= 80; e99.. x114 =L= 200; e100.. x115 =L= 100; e101.. x116 =L= 110; e102.. x117 =L= 90; e103.. x118 =L= 139; e104.. x119 =L= 130; e105.. x120 =L= 90; e106.. x121 =L= 145; e107.. x122 =L= 250; e108.. x123 =L= 200; e109.. x124 =L= 277; e110.. x125 =L= 80; e111.. x126 =L= 220; e112.. -(x34*x103 + x41*x109 + x48*x115 + x55*x121) - 15*x13 - 300*x62 - 400*x69 - 90*x76 =G= -4000; e113.. -(x34*x104 + x41*x110 + x48*x116 + x55*x122) - 25*x6 - 140*x62 - 155*x69 - 100*x76 =G= -800; e114.. -(x34*x105 + x41*x111 + x48*x117 + x55*x123) - 2*x6 - 200*x62 - 180*x69 - 300*x76 =G= -600; e115.. -(x34*x106 + x41*x112 + x48*x118 + x55*x124) - 4*x6 - 9*x13 - 170*x62 - 220*x69 - 220*x76 =G= -1600; e116.. -(x34*x107 + x41*x113 + x48*x119 + x55*x125) - 3*x13 - 130*x62 - 110*x69 - 80*x76 =G= -600; e117.. -(x34*x108 + x41*x114 + x48*x120 + x55*x126) - 2*x6 - 200*x62 - 190*x69 - 115*x76 =G= -2000; e118.. -(x35*x103 + x42*x109 + x49*x115 + x56*x121) - 15*x14 - 300*x63 - 400*x70 - 90*x77 =G= -18000; e119.. -(x35*x104 + x42*x110 + x49*x116 + x56*x122) - 25*x7 - 140*x63 - 155*x70 - 100*x77 =G= -3300; e120.. -(x35*x105 + x42*x111 + x49*x117 + x56*x123) - 2*x7 - 200*x63 - 180*x70 - 300*x77 =G= -4800; e121.. -(x35*x106 + x42*x112 + x49*x118 + x56*x124) - 4*x7 - 9*x14 - 170*x63 - 220*x70 - 220*x77 =G= -7200; e122.. -(x35*x107 + x42*x113 + x49*x119 + x56*x125) - 3*x14 - 130*x63 - 110*x70 - 80*x77 =G= -3600; e123.. -(x35*x108 + x42*x114 + x49*x120 + x56*x126) - 2*x7 - 200*x63 - 190*x70 - 115*x77 =G= -5400; e124.. -(x36*x103 + x43*x109 + x50*x115 + x57*x121) - 15*x15 - 300*x64 - 400*x71 - 90*x78 =G= -1400; e125.. -(x36*x104 + x43*x110 + x50*x116 + x57*x122) - 25*x8 - 140*x64 - 155*x71 - 100*x78 =G= -1750; e126.. -(x36*x105 + x43*x111 + x50*x117 + x57*x123) - 2*x8 - 200*x64 - 180*x71 - 300*x78 =G= -7000; e127.. -(x36*x106 + x43*x112 + x50*x118 + x57*x124) - 4*x8 - 9*x15 - 170*x64 - 220*x71 - 220*x78 =G= -1400; e128.. -(x36*x107 + x43*x113 + x50*x119 + x57*x125) - 3*x15 - 130*x64 - 110*x71 - 80*x78 =G= -2800; e129.. -(x36*x108 + x43*x114 + x50*x120 + x57*x126) - 2*x8 - 200*x64 - 190*x71 - 115*x78 =G= -3150; e130.. x16 =L= 120; e131.. x17 =L= 50; e132.. x18 =L= 80; e133.. x19 =L= 90; e134.. x20 =L= 0; e135.. x21 =L= 0; e136.. x22 =L= 0; * set non-default bounds x2.up = 100000; x3.up = 100000; x4.up = 100000; x5.up = 100000; x6.up = 100000; x7.up = 100000; x8.up = 100000; x9.up = 100000; x10.up = 100000; x11.up = 100000; x12.up = 100000; x13.up = 100000; x14.up = 100000; x15.up = 100000; x16.up = 100000; x17.up = 100000; x18.up = 100000; x19.up = 100000; x20.up = 100000; x21.up = 100000; x22.up = 100000; x23.up = 100000; x24.up = 100000; x25.up = 100000; x26.up = 100000; x27.up = 100000; x28.up = 100000; x29.up = 100000; x30.up = 100000; x31.up = 100000; x32.up = 100000; x33.up = 100000; x34.up = 100000; x35.up = 100000; x36.up = 100000; x37.up = 100000; x38.up = 100000; x39.up = 100000; x40.up = 100000; x41.up = 100000; x42.up = 100000; x43.up = 100000; x44.up = 100000; x45.up = 100000; x46.up = 100000; x47.up = 100000; x48.up = 100000; x49.up = 100000; x50.up = 100000; x51.up = 100000; x52.up = 100000; x53.up = 100000; x54.up = 100000; x55.up = 100000; x56.up = 100000; x57.up = 100000; x58.up = 100000; x59.up = 100000; x60.up = 100000; x61.up = 100000; x62.up = 100000; x63.up = 100000; x64.up = 100000; x65.up = 100000; x66.up = 100000; x67.up = 100000; x68.up = 100000; x69.up = 100000; x70.up = 100000; x71.up = 100000; x72.up = 100000; x73.up = 100000; x74.up = 100000; x75.up = 100000; x76.up = 100000; x77.up = 100000; x78.up = 100000; x79.up = 100000; x80.up = 100000; x81.up = 100000; x82.up = 100000; x83.up = 100000; x84.up = 100000; x85.up = 100000; x86.up = 100000; x87.up = 100000; x88.up = 100000; x89.up = 100000; x90.up = 100000; x91.up = 100000; x92.up = 100000; x93.up = 100000; x94.up = 100000; x95.up = 100000; x96.up = 100000; x97.up = 100000; x98.up = 100000; x99.up = 100000; x100.up = 100000; x101.up = 100000; x102.up = 100000; x103.up = 100000; x104.up = 100000; x105.up = 100000; x106.up = 100000; x107.up = 100000; x108.up = 100000; x109.up = 100000; x110.up = 100000; x111.up = 100000; x112.up = 100000; x113.up = 100000; x114.up = 100000; x115.up = 100000; x116.up = 100000; x117.up = 100000; x118.up = 100000; x119.up = 100000; x120.up = 100000; x121.up = 100000; x122.up = 100000; x123.up = 100000; x124.up = 100000; x125.up = 100000; x126.up = 100000; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f