MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance waterund18
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 237.14317200 (ANTIGONE) 237.08510780 (BARON) 236.84070550 (COUENNE) 238.66375020 (GUROBI) 236.95696980 (LINDO) 238.65264270 (SCIP) |
Referencesⓘ | Castro, Pedro M and Teles, João P, Comparison of global optimization algorithms for the design of water-using networks, Computers and Chemical Engineering, 52, 2013, 249-261. Teles, João P, Castro, Pedro M, and Novais, Augusto Q, LP-based solution strategies for the optimal design of industrial water networks with multiple contaminants, Chemical Engineering Science, 63:2, 2008, 376-394. Teles, João P, Castro, Pedro M, and Matos, Henrique A, Global optimization of water networks design using multiparametric disaggregation, Computers and Chemical Engineering 40, 2012, 132-147. |
Sourceⓘ | ANTIGONE test library model Other_MIQCQP/teles_etal_2009_WUN_Ex18.gms |
Applicationⓘ | Water Network Design |
Added to libraryⓘ | 15 Aug 2014 |
Problem typeⓘ | QCP |
#Variablesⓘ | 60 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 39 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 12 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 64 |
#Linear Constraintsⓘ | 36 |
#Quadratic Constraintsⓘ | 28 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 274 |
#Nonlinear Nonzeros in Jacobianⓘ | 156 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 144 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 3 |
Minimal blocksize in Hessian of Lagrangianⓘ | 13 |
Maximal blocksize in Hessian of Lagrangianⓘ | 13 |
Average blocksize in Hessian of Lagrangianⓘ | 13.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 2.5000e+02 |
Infeasibility of initial pointⓘ | 1.23e+04 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 65 33 4 28 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 61 61 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 287 131 156 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35 ,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52 ,x53,x54,x55,x56,x57,x58,x59,x60,x61; Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51 ,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65; e1.. objvar - x2 - x3 - x4 - x5 - x6 - x7 - x8 - x9 - x10 - x11 - x12 - x13 =E= 0; e2.. - x2 - x6 - x10 + x14 - x22 - x26 - x30 - x34 =E= 0; e3.. - x3 - x7 - x11 + x15 - x23 - x27 - x31 - x35 =E= 0; e4.. - x4 - x8 - x12 + x16 - x24 - x28 - x32 - x36 =E= 0; e5.. - x5 - x9 - x13 - x25 - x29 - x33 - x37 =E= -170; e6.. x14 - x18 - x22 - x23 - x24 - x25 =E= 0; e7.. x15 - x19 - x26 - x27 - x28 - x29 =E= 0; e8.. x16 - x20 - x30 - x31 - x32 - x33 =E= 0; e9.. - x21 - x34 - x35 - x36 - x37 =E= -140; e10.. x14*x38 - (x22*x50 + x26*x54 + x30*x58) - 2*x6 - 250*x34 =E= 0; e11.. x14*x39 - (x22*x51 + x26*x55 + x30*x59) - 3*x2 - x6 - 180*x34 =E= 0; e12.. x14*x40 - (x22*x52 + x26*x56 + x30*x60) - x10 - 90*x34 =E= 0; e13.. x14*x41 - (x22*x53 + x26*x57 + x30*x61) - 3*x10 - 90*x34 =E= 0; e14.. x15*x42 - (x23*x50 + x27*x54 + x31*x58) - 2*x7 - 250*x35 =E= 0; e15.. x15*x43 - (x23*x51 + x27*x55 + x31*x59) - 3*x3 - x7 - 180*x35 =E= 0; e16.. x15*x44 - (x23*x52 + x27*x56 + x31*x60) - x11 - 90*x35 =E= 0; e17.. x15*x45 - (x23*x53 + x27*x57 + x31*x61) - 3*x11 - 90*x35 =E= 0; e18.. x16*x46 - (x24*x50 + x28*x54 + x32*x58) - 2*x8 - 250*x36 =E= 0; e19.. x16*x47 - (x24*x51 + x28*x55 + x32*x59) - 3*x4 - x8 - 180*x36 =E= 0; e20.. x16*x48 - (x24*x52 + x28*x56 + x32*x60) - x12 - 90*x36 =E= 0; e21.. x16*x49 - (x24*x53 + x28*x57 + x32*x61) - 3*x12 - 90*x36 =E= 0; e22.. -x14*(x50 - x38) =E= -3690; e23.. -x14*(x51 - x39) =E= -3690; e24.. -x14*(x52 - x40) =E= -1230; e25.. -x14*(x53 - x41) =E= -3690; e26.. -x15*(x54 - x42) =E= -940; e27.. -x15*(x55 - x43) =E= -2350; e28.. -x15*(x56 - x44) =E= -1175; e29.. -x15*(x57 - x45) =E= -1880; e30.. -x16*(x58 - x46) =E= -12300; e31.. -x16*(x59 - x47) =E= -12300; e32.. -x16*(x60 - x48) =E= -6150; e33.. -x16*(x61 - x49) =E= -4920; e34.. x38 =L= 20; e35.. x39 =L= 30; e36.. x40 =L= 20; e37.. x41 =L= 10; e38.. x42 =L= 50; e39.. x43 =L= 20; e40.. x44 =L= 20; e41.. x45 =L= 20; e42.. x46 =L= 100; e43.. x47 =L= 150; e44.. x48 =L= 30; e45.. x49 =L= 20; e46.. x50 =L= 50; e47.. x51 =L= 60; e48.. x52 =L= 30; e49.. x53 =L= 40; e50.. x54 =L= 70; e51.. x55 =L= 70; e52.. x56 =L= 45; e53.. x57 =L= 60; e54.. x58 =L= 200; e55.. x59 =L= 250; e56.. x60 =L= 80; e57.. x61 =L= 60; e58.. -(x25*x50 + x29*x54 + x33*x58) - 2*x9 - 250*x37 =G= -34000; e59.. -(x25*x51 + x29*x55 + x33*x59) - 3*x5 - x9 - 180*x37 =G= -13600; e60.. -(x25*x52 + x29*x56 + x33*x60) - x13 - 90*x37 =G= -3400; e61.. -(x25*x53 + x29*x57 + x33*x61) - 3*x13 - 90*x37 =G= -10200; e62.. x14 =L= 123; e63.. x15 =L= 47; e64.. x16 =L= 123; e65.. x17 =L= 0; * set non-default bounds x2.up = 100000; x3.up = 100000; x4.up = 100000; x5.up = 100000; x6.up = 100000; x7.up = 100000; x8.up = 100000; x9.up = 100000; x10.up = 100000; x11.up = 100000; x12.up = 100000; x13.up = 100000; x14.up = 100000; x15.up = 100000; x16.up = 100000; x17.up = 100000; x18.up = 100000; x19.up = 100000; x20.up = 100000; x21.up = 100000; x22.up = 100000; x23.up = 100000; x24.up = 100000; x25.up = 100000; x26.up = 100000; x27.up = 100000; x28.up = 100000; x29.up = 100000; x30.up = 100000; x31.up = 100000; x32.up = 100000; x33.up = 100000; x34.up = 100000; x35.up = 100000; x36.up = 100000; x37.up = 100000; x38.up = 100000; x39.up = 100000; x40.up = 100000; x41.up = 100000; x42.up = 100000; x43.up = 100000; x44.up = 100000; x45.up = 100000; x46.up = 100000; x47.up = 100000; x48.up = 100000; x49.up = 100000; x50.up = 100000; x51.up = 100000; x52.up = 100000; x53.up = 100000; x54.up = 100000; x55.up = 100000; x56.up = 100000; x57.up = 100000; x58.up = 100000; x59.up = 100000; x60.up = 100000; x61.up = 100000; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f