MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance waterund22
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 323.42137240 (ANTIGONE) 317.74755370 (BARON) 320.57744880 (COUENNE) 323.50261010 (GUROBI) 316.62231920 (LINDO) 323.47275700 (SCIP) 10.00000000 (SHOT) |
Referencesⓘ | Castro, Pedro M and Teles, João P, Comparison of global optimization algorithms for the design of water-using networks, Computers and Chemical Engineering, 52, 2013, 249-261. Teles, João P, Castro, Pedro M, and Novais, Augusto Q, LP-based solution strategies for the optimal design of industrial water networks with multiple contaminants, Chemical Engineering Science, 63:2, 2008, 376-394. Teles, João P, Castro, Pedro M, and Matos, Henrique A, Global optimization of water networks design using multiparametric disaggregation, Computers and Chemical Engineering 40, 2012, 132-147. |
Sourceⓘ | ANTIGONE test library model Other_MIQCQP/teles_etal_2009_WUN_Ex22.gms |
Applicationⓘ | Water Network Design |
Added to libraryⓘ | 15 Aug 2014 |
Problem typeⓘ | QCP |
#Variablesⓘ | 146 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 80 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 35 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 135 |
#Linear Constraintsⓘ | 69 |
#Quadratic Constraintsⓘ | 66 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 981 |
#Nonlinear Nonzeros in Jacobianⓘ | 456 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 432 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 4 |
Minimal blocksize in Hessian of Lagrangianⓘ | 20 |
Maximal blocksize in Hessian of Lagrangianⓘ | 20 |
Average blocksize in Hessian of Lagrangianⓘ | 20.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 5.0500e+02 |
Infeasibility of initial pointⓘ | 4.76e+04 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 136 63 18 55 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 147 147 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 1017 561 456 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35 ,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52 ,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69 ,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86 ,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102 ,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115 ,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128 ,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141 ,x142,x143,x144,x145,x146,x147; Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51 ,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68 ,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85 ,x86,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101 ,x102,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114 ,x115,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127 ,x128,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140 ,x141,x142,x143,x144,x145,x146,x147; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136; e1.. objvar - x2 - x3 - x4 - x5 - x6 - x7 - x8 - x9 - x10 - x11 - x12 - x13 - x14 - x15 - x16 - x17 - x18 - x19 - x20 - x21 - x22 - x23 - x24 - x25 - x26 - x27 - x28 - x29 - x30 - x31 - x32 - x33 - x34 - x35 - x36 =E= 0; e2.. - x2 - x9 - x16 - x23 - x30 + x37 - x51 - x58 - x65 - x72 - x79 - x86 - x93 =E= 0; e3.. - x3 - x10 - x17 - x24 - x31 + x38 - x52 - x59 - x66 - x73 - x80 - x87 - x94 =E= 0; e4.. - x4 - x11 - x18 - x25 - x32 + x39 - x53 - x60 - x67 - x74 - x81 - x88 - x95 =E= 0; e5.. - x5 - x12 - x19 - x26 - x33 + x40 - x54 - x61 - x68 - x75 - x82 - x89 - x96 =E= 0; e6.. - x6 - x13 - x20 - x27 - x34 - x55 - x62 - x69 - x76 - x83 - x90 - x97 =E= -80; e7.. - x7 - x14 - x21 - x28 - x35 - x56 - x63 - x70 - x77 - x84 - x91 - x98 =E= -80; e8.. - x8 - x15 - x22 - x29 - x36 - x57 - x64 - x71 - x78 - x85 - x92 - x99 =E= -70; e9.. x37 - x44 - x51 - x52 - x53 - x54 - x55 - x56 - x57 =E= 0; e10.. x38 - x45 - x58 - x59 - x60 - x61 - x62 - x63 - x64 =E= 0; e11.. x39 - x46 - x65 - x66 - x67 - x68 - x69 - x70 - x71 =E= 0; e12.. x40 - x47 - x72 - x73 - x74 - x75 - x76 - x77 - x78 =E= 0; e13.. - x48 - x79 - x80 - x81 - x82 - x83 - x84 - x85 =E= -30; e14.. - x49 - x86 - x87 - x88 - x89 - x90 - x91 - x92 =E= -100; e15.. - x50 - x93 - x94 - x95 - x96 - x97 - x98 - x99 =E= -90; e16.. x37*x100 - (x51*x124 + x58*x130 + x65*x136 + x72*x142) - x2 - 6*x9 - 4*x16 - 7*x23 - 6*x30 - 421*x79 - 112*x86 - 491*x93 =E= 0; e17.. x37*x101 - (x51*x125 + x58*x131 + x65*x137 + x72*x143) - 2*x2 - 2*x9 - 8*x16 - 9*x23 - 9*x30 - 316*x79 - 429*x86 - 476*x93 =E= 0; e18.. x37*x102 - (x51*x126 + x58*x132 + x65*x138 + x72*x144) - 2*x2 - 2*x9 - 6*x16 - 5*x23 - 2*x30 - 391*x79 - 505*x86 - 197*x93 =E= 0; e19.. x37*x103 - (x51*x127 + x58*x133 + x65*x139 + x72*x145) - 5*x2 - 3*x9 - 3*x16 - x23 - x30 - 352*x79 - 266*x86 - 493*x93 =E= 0; e20.. x37*x104 - (x51*x128 + x58*x134 + x65*x140 + x72*x146) - 2*x2 - 6*x9 - 2*x16 - x23 - 6*x30 - 461*x79 - 481*x86 - 399*x93 =E= 0; e21.. x37*x105 - (x51*x129 + x58*x135 + x65*x141 + x72*x147) - 10*x2 - x16 - 4*x30 - 489*x79 - 505*x86 - 495*x93 =E= 0; e22.. x38*x106 - (x52*x124 + x59*x130 + x66*x136 + x73*x142) - x3 - 6*x10 - 4*x17 - 7*x24 - 6*x31 - 421*x80 - 112*x87 - 491*x94 =E= 0; e23.. x38*x107 - (x52*x125 + x59*x131 + x66*x137 + x73*x143) - 2*x3 - 2*x10 - 8*x17 - 9*x24 - 9*x31 - 316*x80 - 429*x87 - 476*x94 =E= 0; e24.. x38*x108 - (x52*x126 + x59*x132 + x66*x138 + x73*x144) - 2*x3 - 2*x10 - 6*x17 - 5*x24 - 2*x31 - 391*x80 - 505*x87 - 197*x94 =E= 0; e25.. x38*x109 - (x52*x127 + x59*x133 + x66*x139 + x73*x145) - 5*x3 - 3*x10 - 3*x17 - x24 - x31 - 352*x80 - 266*x87 - 493*x94 =E= 0; e26.. x38*x110 - (x52*x128 + x59*x134 + x66*x140 + x73*x146) - 2*x3 - 6*x10 - 2*x17 - x24 - 6*x31 - 461*x80 - 481*x87 - 399*x94 =E= 0; e27.. x38*x111 - (x52*x129 + x59*x135 + x66*x141 + x73*x147) - 10*x3 - x17 - 4*x31 - 489*x80 - 505*x87 - 495*x94 =E= 0; e28.. x39*x112 - (x53*x124 + x60*x130 + x67*x136 + x74*x142) - x4 - 6*x11 - 4*x18 - 7*x25 - 6*x32 - 421*x81 - 112*x88 - 491*x95 =E= 0; e29.. x39*x113 - (x53*x125 + x60*x131 + x67*x137 + x74*x143) - 2*x4 - 2*x11 - 8*x18 - 9*x25 - 9*x32 - 316*x81 - 429*x88 - 476*x95 =E= 0; e30.. x39*x114 - (x53*x126 + x60*x132 + x67*x138 + x74*x144) - 2*x4 - 2*x11 - 6*x18 - 5*x25 - 2*x32 - 391*x81 - 505*x88 - 197*x95 =E= 0; e31.. x39*x115 - (x53*x127 + x60*x133 + x67*x139 + x74*x145) - 5*x4 - 3*x11 - 3*x18 - x25 - x32 - 352*x81 - 266*x88 - 493*x95 =E= 0; e32.. x39*x116 - (x53*x128 + x60*x134 + x67*x140 + x74*x146) - 2*x4 - 6*x11 - 2*x18 - x25 - 6*x32 - 461*x81 - 481*x88 - 399*x95 =E= 0; e33.. x39*x117 - (x53*x129 + x60*x135 + x67*x141 + x74*x147) - 10*x4 - x18 - 4*x32 - 489*x81 - 505*x88 - 495*x95 =E= 0; e34.. x40*x118 - (x54*x124 + x61*x130 + x68*x136 + x75*x142) - x5 - 6*x12 - 4*x19 - 7*x26 - 6*x33 - 421*x82 - 112*x89 - 491*x96 =E= 0; e35.. x40*x119 - (x54*x125 + x61*x131 + x68*x137 + x75*x143) - 2*x5 - 2*x12 - 8*x19 - 9*x26 - 9*x33 - 316*x82 - 429*x89 - 476*x96 =E= 0; e36.. x40*x120 - (x54*x126 + x61*x132 + x68*x138 + x75*x144) - 2*x5 - 2*x12 - 6*x19 - 5*x26 - 2*x33 - 391*x82 - 505*x89 - 197*x96 =E= 0; e37.. x40*x121 - (x54*x127 + x61*x133 + x68*x139 + x75*x145) - 5*x5 - 3*x12 - 3*x19 - x26 - x33 - 352*x82 - 266*x89 - 493*x96 =E= 0; e38.. x40*x122 - (x54*x128 + x61*x134 + x68*x140 + x75*x146) - 2*x5 - 6*x12 - 2*x19 - x26 - 6*x33 - 461*x82 - 481*x89 - 399*x96 =E= 0; e39.. x40*x123 - (x54*x129 + x61*x135 + x68*x141 + x75*x147) - 10*x5 - x19 - 4*x33 - 489*x82 - 505*x89 - 495*x96 =E= 0; e40.. -x37*(x124 - x100) =E= -19900; e41.. -x37*(x125 - x101) =E= -1700; e42.. -x37*(x126 - x102) =E= -19700; e43.. -x37*(x127 - x103) =E= -18600; e44.. -x37*(x128 - x104) =E= -47600; e45.. -x37*(x129 - x105) =E= -7300; e46.. -x38*(x130 - x106) =E= -6700; e47.. -x38*(x131 - x107) =E= -4300; e48.. -x38*(x132 - x108) =E= -7700; e49.. -x38*(x133 - x109) =E= -20800; e50.. -x38*(x134 - x110) =E= -5000; e51.. -x38*(x135 - x111) =E= -13600; e52.. -x39*(x136 - x112) =E= -8640; e53.. -x39*(x137 - x113) =E= -640; e54.. -x39*(x138 - x114) =E= -2000; e55.. -x39*(x139 - x115) =E= -600; e56.. -x39*(x140 - x116) =E= -7040; e57.. -x39*(x141 - x117) =E= -2480; e58.. -x40*(x142 - x118) =E= -12240; e59.. -x40*(x143 - x119) =E= -12420; e60.. -x40*(x144 - x120) =E= -3150; e61.. -x40*(x145 - x121) =E= -14400; e62.. -x40*(x146 - x122) =E= -810; e63.. -x40*(x147 - x123) =E= -15660; e64.. x100 =L= 65; e65.. x101 =L= 465; e66.. x102 =L= 166; e67.. x103 =L= 56; e68.. x104 =L= 33; e69.. x105 =L= 346; e70.. x106 =L= 448; e71.. x107 =L= 414; e72.. x108 =L= 268; e73.. x109 =L= 191; e74.. x110 =L= 350; e75.. x111 =L= 243; e76.. x112 =L= 171; e77.. x113 =L= 496; e78.. x114 =L= 406; e79.. x115 =L= 486; e80.. x116 =L= 323; e81.. x117 =L= 355; e82.. x118 =L= 139; e83.. x119 =L= 211; e84.. x120 =L= 469; e85.. x121 =L= 65; e86.. x122 =L= 259; e87.. x123 =L= 328; e88.. x124 =L= 264; e89.. x125 =L= 482; e90.. x126 =L= 363; e91.. x127 =L= 242; e92.. x128 =L= 509; e93.. x129 =L= 419; e94.. x130 =L= 515; e95.. x131 =L= 457; e96.. x132 =L= 345; e97.. x133 =L= 399; e98.. x134 =L= 400; e99.. x135 =L= 379; e100.. x136 =L= 387; e101.. x137 =L= 512; e102.. x138 =L= 456; e103.. x139 =L= 501; e104.. x140 =L= 499; e105.. x141 =L= 417; e106.. x142 =L= 275; e107.. x143 =L= 349; e108.. x144 =L= 504; e109.. x145 =L= 225; e110.. x146 =L= 268; e111.. x147 =L= 502; e112.. -(x55*x124 + x62*x130 + x69*x136 + x76*x142) - x6 - 6*x13 - 4*x20 - 7*x27 - 6*x34 - 421*x83 - 112*x90 - 491*x97 =G= -25520; e113.. -(x55*x125 + x62*x131 + x69*x137 + x76*x143) - 2*x6 - 2*x13 - 8*x20 - 9*x27 - 9*x34 - 316*x83 - 429*x90 - 476*x97 =G= -24240; e114.. -(x55*x126 + x62*x132 + x69*x138 + x76*x144) - 2*x6 - 2*x13 - 6*x20 - 5*x27 - 2*x34 - 391*x83 - 505*x90 - 197*x97 =G= -18320; e115.. -(x55*x127 + x62*x133 + x69*x139 + x76*x145) - 5*x6 - 3*x13 - 3*x20 - x27 - x34 - 352*x83 - 266*x90 - 493*x97 =G= -23680; e116.. -(x55*x128 + x62*x134 + x69*x140 + x76*x146) - 2*x6 - 6*x13 - 2*x20 - x27 - 6*x34 - 461*x83 - 481*x90 - 399*x97 =G= -1040; e117.. -(x55*x129 + x62*x135 + x69*x141 + x76*x147) - 10*x6 - x20 - 4*x34 - 489*x83 - 505*x90 - 495*x97 =G= -36320; e118.. -(x56*x124 + x63*x130 + x70*x136 + x77*x142) - x7 - 6*x14 - 4*x21 - 7*x28 - 6*x35 - 421*x84 - 112*x91 - 491*x98 =G= -3440; e119.. -(x56*x125 + x63*x131 + x70*x137 + x77*x143) - 2*x7 - 2*x14 - 8*x21 - 9*x28 - 9*x35 - 316*x84 - 429*x91 - 476*x98 =G= -27360; e120.. -(x56*x126 + x63*x132 + x70*x138 + x77*x144) - 2*x7 - 2*x14 - 6*x21 - 5*x28 - 2*x35 - 391*x84 - 505*x91 - 197*x98 =G= -18560; e121.. -(x56*x127 + x63*x133 + x70*x139 + x77*x145) - 5*x7 - 3*x14 - 3*x21 - x28 - x35 - 352*x84 - 266*x91 - 493*x98 =G= -21200; e122.. -(x56*x128 + x63*x134 + x70*x140 + x77*x146) - 2*x7 - 6*x14 - 2*x21 - x28 - 6*x35 - 461*x84 - 481*x91 - 399*x98 =G= -31440; e123.. -(x56*x129 + x63*x135 + x70*x141 + x77*x147) - 10*x7 - x21 - 4*x35 - 489*x84 - 505*x91 - 495*x98 =G= -23920; e124.. -(x57*x124 + x64*x130 + x71*x136 + x78*x142) - x8 - 6*x15 - 4*x22 - 7*x29 - 6*x36 - 421*x85 - 112*x92 - 491*x99 =G= -31640; e125.. -(x57*x125 + x64*x131 + x71*x137 + x78*x143) - 2*x8 - 2*x15 - 8*x22 - 9*x29 - 9*x36 - 316*x85 - 429*x92 - 476*x99 =G= -4480; e126.. -(x57*x126 + x64*x132 + x71*x138 + x78*x144) - 2*x8 - 2*x15 - 6*x22 - 5*x29 - 2*x36 - 391*x85 - 505*x92 - 197*x99 =G= -700; e127.. -(x57*x127 + x64*x133 + x71*x139 + x78*x145) - 5*x8 - 3*x15 - 3*x22 - x29 - x36 - 352*x85 - 266*x92 - 493*x99 =G= -23380; e128.. -(x57*x128 + x64*x134 + x71*x140 + x78*x146) - 2*x8 - 6*x15 - 2*x22 - x29 - 6*x36 - 461*x85 - 481*x92 - 399*x99 =G= -10010; e129.. -(x57*x129 + x64*x135 + x71*x141 + x78*x147) - 10*x8 - x22 - 4*x36 - 489*x85 - 505*x92 - 495*x99 =G= -17080; e130.. x37 =L= 100; e131.. x38 =L= 100; e132.. x39 =L= 40; e133.. x40 =L= 90; e134.. x41 =L= 0; e135.. x42 =L= 0; e136.. x43 =L= 0; * set non-default bounds x2.up = 100000; x3.up = 100000; x4.up = 100000; x5.up = 100000; x6.up = 100000; x7.up = 100000; x8.up = 100000; x9.up = 100000; x10.up = 100000; x11.up = 100000; x12.up = 100000; x13.up = 100000; x14.up = 100000; x15.up = 100000; x16.up = 100000; x17.up = 100000; x18.up = 100000; x19.up = 100000; x20.up = 100000; x21.up = 100000; x22.up = 100000; x23.up = 100000; x24.up = 100000; x25.up = 100000; x26.up = 100000; x27.up = 100000; x28.up = 100000; x29.up = 100000; x30.up = 100000; x31.up = 100000; x32.up = 100000; x33.up = 100000; x34.up = 100000; x35.up = 100000; x36.up = 100000; x37.up = 100000; x38.up = 100000; x39.up = 100000; x40.up = 100000; x41.up = 100000; x42.up = 100000; x43.up = 100000; x44.up = 100000; x45.up = 100000; x46.up = 100000; x47.up = 100000; x48.up = 100000; x49.up = 100000; x50.up = 100000; x51.up = 100000; x52.up = 100000; x53.up = 100000; x54.up = 100000; x55.up = 100000; x56.up = 100000; x57.up = 100000; x58.up = 100000; x59.up = 100000; x60.up = 100000; x61.up = 100000; x62.up = 100000; x63.up = 100000; x64.up = 100000; x65.up = 100000; x66.up = 100000; x67.up = 100000; x68.up = 100000; x69.up = 100000; x70.up = 100000; x71.up = 100000; x72.up = 100000; x73.up = 100000; x74.up = 100000; x75.up = 100000; x76.up = 100000; x77.up = 100000; x78.up = 100000; x79.up = 100000; x80.up = 100000; x81.up = 100000; x82.up = 100000; x83.up = 100000; x84.up = 100000; x85.up = 100000; x86.up = 100000; x87.up = 100000; x88.up = 100000; x89.up = 100000; x90.up = 100000; x91.up = 100000; x92.up = 100000; x93.up = 100000; x94.up = 100000; x95.up = 100000; x96.up = 100000; x97.up = 100000; x98.up = 100000; x99.up = 100000; x100.up = 100000; x101.up = 100000; x102.up = 100000; x103.up = 100000; x104.up = 100000; x105.up = 100000; x106.up = 100000; x107.up = 100000; x108.up = 100000; x109.up = 100000; x110.up = 100000; x111.up = 100000; x112.up = 100000; x113.up = 100000; x114.up = 100000; x115.up = 100000; x116.up = 100000; x117.up = 100000; x118.up = 100000; x119.up = 100000; x120.up = 100000; x121.up = 100000; x122.up = 100000; x123.up = 100000; x124.up = 100000; x125.up = 100000; x126.up = 100000; x127.up = 100000; x128.up = 100000; x129.up = 100000; x130.up = 100000; x131.up = 100000; x132.up = 100000; x133.up = 100000; x134.up = 100000; x135.up = 100000; x136.up = 100000; x137.up = 100000; x138.up = 100000; x139.up = 100000; x140.up = 100000; x141.up = 100000; x142.up = 100000; x143.up = 100000; x144.up = 100000; x145.up = 100000; x146.up = 100000; x147.up = 100000; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f