MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance waterz

Formats ams gms mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
1349.58992100 p1 ( gdx sol )
(infeas: 8e-11)
1037.64180600 p2 ( gdx sol )
(infeas: 5e-14)
907.01699590 p3 ( gdx sol )
(infeas: 3e-10)
Other points (infeas > 1e-08)  
Dual Bounds
484.95868560 (BARON)
255.36669090 (COUENNE)
274.76889000 (LINDO)
563.49861890 (SCIP)
0.00000000 (SHOT)
References Brooke, Anthony, Drud, Arne S, and Meeraus, Alexander, Modeling Systems and Nonlinear Programming in a Research Environment. In Ragavan, R and Rohde, S M, Eds, Computers in Engineering, Vol. III, ACME, 1985.
Drud, Arne S and Rosenborg, A, Dimensioning Water Distribution Networks, Masters thesis, Institute of Mathematical Statistics and Operations Research, Technical University of Denmark, 1973. In Danish.
Source modified GAMS Model Library model waterx
Application Water Network Design
Added to library 01 May 2001
Problem type MBNLP
#Variables 195
#Binary Variables 126
#Integer Variables 0
#Nonlinear Variables 46
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 3
#Nonlinear Nonzeros in Objective 0
#Constraints 137
#Linear Constraints 122
#Quadratic Constraints 1
#Polynomial Constraints 14
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 641
#Nonlinear Nonzeros in Jacobian 46
#Nonzeros in (Upper-Left) Hessian of Lagrangian 116
#Nonzeros in Diagonal of Hessian of Lagrangian 28
#Blocks in Hessian of Lagrangian 16
Minimal blocksize in Hessian of Lagrangian 2
Maximal blocksize in Hessian of Lagrangian 3
Average blocksize in Hessian of Lagrangian 2.875
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 2.8629e-02
Maximal coefficient 6.3468e+04
Infeasibility of initial point 8503
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*        138       54       14       70        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        196       70      126        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        645      599       46        0
*
*  Solve m using MINLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
          ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53
          ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69
          ,objvar,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85
          ,b86,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101
          ,b102,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114
          ,b115,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127
          ,b128,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140
          ,b141,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153
          ,b154,b155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166
          ,b167,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179
          ,b180,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192
          ,b193,b194,b195,b196;

Positive Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17
          ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x65,x66;

Binary Variables  b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85
          ,b86,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101
          ,b102,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114
          ,b115,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127
          ,b128,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140
          ,b141,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153
          ,b154,b155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166
          ,b167,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179
          ,b180,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192
          ,b193,b194,b195,b196;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
          ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
          ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
          ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
          ,e130,e131,e132,e133,e134,e135,e136,e137,e138;


e1..  - x1 - x2 - x3 + x15 + x16 + x17 + x65 =E= 0;

e2..  - x4 - x5 - x6 - x7 + x18 + x19 + x20 + x21 + x66 =E= 0;

e3..    x1 + x4 - x8 - x9 - x10 - x11 - x15 - x18 + x22 + x23 + x24 + x25
      =E= 1.212;

e4..    x2 + x8 + x12 - x16 - x22 - x26 =E= 0.452;

e5..    x9 - x12 + x13 - x23 + x26 - x27 =E= 0.245;

e6..    x5 + x10 - x13 - x14 - x19 - x24 + x27 + x28 =E= 0.652;

e7..    x6 + x14 - x20 - x28 =E= 0.252;

e8..    x3 + x7 + x11 - x17 - x21 - x25 =E= 0.456;

e9..    x29 - 38721.1970117411*b86 - 2543.8701482414*b87 - 207.747320703761*b88
      - 23.9314504121258*b89 - 1.5722267648148*b90 - 0.181112645550961*b91
      - 0.0390863672545667*b92 =E= 0;

e10..    x30 - 32510.4890865135*b94 - 2135.84468132099*b95
       - 174.425573683688*b96 - 20.0929521164322*b97 - 1.32004857865156*b98
       - 0.152062982061963*b99 - 0.0328170876451919*b100 =E= 0;

e11..    x31 - 63468.4628982673*b102 - 4169.69361956223*b103
       - 340.521578201805*b104 - 39.2263796008983*b105 - 2.57705917665854*b106
       - 0.296864304610023*b107 - 0.0640670186196026*b108 =E= 0;

e12..    x32 - 50797.5773435889*b110 - 3337.25325093014*b111
       - 272.539627020641*b112 - 31.3951994533022*b113 - 2.06257339263358*b114
       - 0.237598120158509*b115 - 0.0512766370081929*b116 =E= 0;

e13..    x33 - 59165.7349698592*b118 - 3887.01689524085*b119
       - 317.436542928413*b120 - 36.5670992066393*b121 - 2.40235218067626*b122
       - 0.27673893405488*b123 - 0.0597237127048799*b124 =E= 0;

e14..    x34 - 32977.2294678044*b126 - 2166.50816836621*b127
       - 176.929733450444*b128 - 20.3814187742893*b129 - 1.339*b130
       - 0.154246090843839*b131 - 0.0332882297421199*b132 =E= 0;

e15..    x35 - 33843.9321019273*b134 - 2223.4480134252*b135
       - 181.579774357788*b136 - 20.9170801874496*b137 - 1.37419139860501*b138
       - 0.158299963634093*b139 - 0.0341631060391402*b140 =E= 0;

e16..    x36 - 31810.181054648*b142 - 2089.8364782095*b143
       - 170.668274619734*b144 - 19.660130090483*b145 - 1.2916134290104*b146
       - 0.148787395299671*b147 - 0.0321101751776739*b148 =E= 0;

e17..    x37 - 39461.9459070343*b150 - 2592.53519858857*b151
       - 211.721593458417*b152 - 24.3892667200816*b153 - 1.60230396616872*b154
       - 0.184577388442944*b155 - 0.0398341019735132*b156 =E= 0;

e18..    x38 - 32977.2294678044*b158 - 2166.50816836621*b159
       - 176.929733450444*b160 - 20.3814187742893*b161 - 1.339*b162
       - 0.154246090843839*b163 - 0.0332882297421199*b164 =E= 0;

e19..    x39 - 52785.5148814787*b166 - 3467.85497167945*b167
       - 283.205327698691*b168 - 32.6238347301504*b169 - 2.14329116080854*b170
       - 0.246896402610059*b171 - 0.0532833223041444*b172 =E= 0;

e20..    x40 - 30677.4142839491*b174 - 2015.41699236491*b175
       - 164.590743970989*b176 - 18.9600290116536*b177 - 1.24561882211213*b178
       - 0.143489047044288*b179 - 0.0309667255575633*b180 =E= 0;

e21..    x41 - 28361.2795383154*b182 - 1863.25366856746*b183
       - 152.164196629274*b184 - 17.5285530220005*b185 - 1.15157500841239*b186
       - 0.132655670919396*b187 - 0.0286287479053886*b188 =E= 0;

e22..    x42 - 50797.5773435889*b190 - 3337.25325093014*b191
       - 272.539627020641*b192 - 31.3951994533022*b193 - 2.06257339263358*b194
       - 0.237598120158509*b195 - 0.0512766370081929*b196 =E= 0;

e23.. -(x1 + x15)*(x1 - x15)*x29 + x43 - x45 - x51 =E= 0;

e24.. -(x2 + x16)*(x2 - x16)*x30 + x43 - x46 - x52 =E= 0;

e25.. -(x3 + x17)*(x3 - x17)*x31 + x43 - x50 - x53 =E= 0;

e26.. -(x4 + x18)*(x4 - x18)*x32 + x44 - x45 - x54 =E= 0;

e27.. -(x5 + x19)*(x5 - x19)*x33 + x44 - x48 - x55 =E= 0;

e28.. -(x6 + x20)*(x6 - x20)*x34 + x44 - x49 - x56 =E= 0;

e29.. -(x7 + x21)*(x7 - x21)*x35 + x44 - x50 - x57 =E= 0;

e30.. -(x8 + x22)*(x8 - x22)*x36 + x45 - x46 - x58 =E= 0;

e31.. -(x9 + x23)*(x9 - x23)*x37 + x45 - x47 - x59 =E= 0;

e32.. -(x10 + x24)*(x10 - x24)*x38 + x45 - x48 - x60 =E= 0;

e33.. -(x11 + x25)*(x11 - x25)*x39 + x45 - x50 - x61 =E= 0;

e34.. -(x12 + x26)*(x12 - x26)*x40 - x46 + x47 - x62 =E= 0;

e35.. -(x13 + x27)*(x13 - x27)*x41 - x47 + x48 - x63 =E= 0;

e36.. -(x14 + x28)*(x14 - x28)*x42 + x48 - x49 - x64 =E= 0;

e37..    x51 - 12*b85 =L= 0;

e38..    x52 - 12*b93 =L= 0;

e39..    x53 - 12*b101 =L= 0;

e40..    x54 - 12*b109 =L= 0;

e41..    x55 - 12*b117 =L= 0;

e42..    x56 - 12*b125 =L= 0;

e43..    x57 - 12*b133 =L= 0;

e44..    x58 - 12*b141 =L= 0;

e45..    x59 - 12*b149 =L= 0;

e46..    x60 - 12*b157 =L= 0;

e47..    x61 - 12*b165 =L= 0;

e48..    x62 - 12*b173 =L= 0;

e49..    x63 - 12*b181 =L= 0;

e50..    x64 - 12*b189 =L= 0;

e51..    x51 + 12*b85 =G= 0;

e52..    x52 + 12*b93 =G= 0;

e53..    x53 + 12*b101 =G= 0;

e54..    x54 + 12*b109 =G= 0;

e55..    x55 + 12*b117 =G= 0;

e56..    x56 + 12*b125 =G= 0;

e57..    x57 + 12*b133 =G= 0;

e58..    x58 + 12*b141 =G= 0;

e59..    x59 + 12*b149 =G= 0;

e60..    x60 + 12*b157 =G= 0;

e61..    x61 + 12*b165 =G= 0;

e62..    x62 + 12*b173 =G= 0;

e63..    x63 + 12*b181 =G= 0;

e64..    x64 + 12*b189 =G= 0;

e65.. -(1.02*x65*(-6.5 + x43) + 1.02*x66*(-3.25 + x44)) + x67 =E= 0;

e66..    x68 - 9.11349113439539*b86 - 17.6144733325531*b87
       - 32.2986551864818*b88 - 54.4931814987685*b89 - 105.323928905069*b90
       - 177.698914733437*b91 - 257.546555368226*b92 - 7.65172765642961*b94
       - 14.7891900880288*b95 - 27.118094428506*b96 - 45.7527173518919*b97
       - 88.4304387640365*b98 - 149.196798497086*b99 - 216.237232413786*b100
       - 14.9380525029139*b102 - 28.8721329260735*b103 - 52.941183552398*b104
       - 89.3205462402005*b105 - 172.637944844116*b106 - 291.268810037089*b107
       - 422.148209648796*b108 - 11.9558099050809*b110 - 23.1080813747994*b111
       - 42.3719709499612*b112 - 71.4885338137291*b113 - 138.172392322055*b114
       - 233.119713791557*b115 - 337.870264236031*b116 - 13.9253546563734*b118
       - 26.9147996770731*b119 - 49.3521332015331*b120 - 83.2652237802191*b121
       - 160.93427229773*b122 - 271.522775764452*b123 - 393.529446744536*b124
       - 7.76158051882097*b126 - 15.0015127080393*b127 - 27.5074183079396*b128
       - 46.4095712271164*b129 - 89.7*b130 - 151.338758602103*b131
       - 219.341665817957*b132 - 7.96556922221359*b134 - 15.3957802311063*b135
       - 28.2303641796868*b136 - 47.6293006671023*b137 - 92.0574820424717*b138
       - 155.316221319321*b139 - 225.10637081608*b140 - 7.48690188831565*b142
       - 14.4706163324673*b143 - 26.5339439013751*b144 - 44.7671586494086*b145
       - 86.5255598074927*b146 - 145.982952158506*b147 - 211.579268940989*b148
       - 9.28783513744935*b150 - 17.9514438466182*b151 - 32.916538800503*b152
       - 55.5356535066454*b153 - 107.338809384118*b154 - 181.098351861986*b155
       - 262.473503425068*b156 - 7.76158051882097*b158 - 15.0015127080393*b159
       - 27.5074183079396*b160 - 46.4095712271164*b161 - 89.7*b162
       - 151.338758602103*b163 - 219.341665817957*b164 - 12.4236944883441*b166
       - 24.0124044704238*b167 - 44.0301766363479*b168 - 74.2862014846846*b169
       - 143.579699122125*b170 - 242.242736071415*b171 - 351.092646411238*b172
       - 7.22029184733547*b174 - 13.9553148538372*b175 - 25.5890649679471*b176
       - 43.1729913716576*b177 - 83.44436769489*b178 - 140.784470672041*b179
       - 204.044889780639*b180 - 6.67516217420068*b182 - 12.9016931463472*b183
       - 23.6570989315674*b184 - 39.913444642481*b185 - 77.1443452237428*b186
       - 130.155289178744*b187 - 188.639567333459*b188 - 11.9558099050809*b190
       - 23.1080813747994*b191 - 42.3719709499612*b192 - 71.4885338137291*b193
       - 138.172392322055*b194 - 233.119713791557*b195 - 337.870264236031*b196
       =E= 0;

e67..  - 0.2*x65 - 0.17*x66 + x69 =E= 0;

e68..  - 10*x67 - x68 - 10*x69 + objvar =E= 0;

e69..    x1 - 2*b71 =L= 0;

e70..    x2 - 2*b72 =L= 0;

e71..    x3 - 2*b73 =L= 0;

e72..    x4 - 2*b74 =L= 0;

e73..    x5 - 2*b75 =L= 0;

e74..    x6 - 2*b76 =L= 0;

e75..    x7 - 2*b77 =L= 0;

e76..    x8 - 2*b78 =L= 0;

e77..    x9 - 2*b79 =L= 0;

e78..    x10 - 2*b80 =L= 0;

e79..    x11 - 2*b81 =L= 0;

e80..    x12 - 2*b82 =L= 0;

e81..    x13 - 2*b83 =L= 0;

e82..    x14 - 2*b84 =L= 0;

e83..    x15 + 2*b71 =L= 2;

e84..    x16 + 2*b72 =L= 2;

e85..    x17 + 2*b73 =L= 2;

e86..    x18 + 2*b74 =L= 2;

e87..    x19 + 2*b75 =L= 2;

e88..    x20 + 2*b76 =L= 2;

e89..    x21 + 2*b77 =L= 2;

e90..    x22 + 2*b78 =L= 2;

e91..    x23 + 2*b79 =L= 2;

e92..    x24 + 2*b80 =L= 2;

e93..    x25 + 2*b81 =L= 2;

e94..    x26 + 2*b82 =L= 2;

e95..    x27 + 2*b83 =L= 2;

e96..    x28 + 2*b84 =L= 2;

e97..    x1 + 2*b85 =L= 2;

e98..    x2 + 2*b93 =L= 2;

e99..    x3 + 2*b101 =L= 2;

e100..    x4 + 2*b109 =L= 2;

e101..    x5 + 2*b117 =L= 2;

e102..    x6 + 2*b125 =L= 2;

e103..    x7 + 2*b133 =L= 2;

e104..    x8 + 2*b141 =L= 2;

e105..    x9 + 2*b149 =L= 2;

e106..    x10 + 2*b157 =L= 2;

e107..    x11 + 2*b165 =L= 2;

e108..    x12 + 2*b173 =L= 2;

e109..    x13 + 2*b181 =L= 2;

e110..    x14 + 2*b189 =L= 2;

e111..    x15 + 2*b85 =L= 2;

e112..    x16 + 2*b93 =L= 2;

e113..    x17 + 2*b101 =L= 2;

e114..    x18 + 2*b109 =L= 2;

e115..    x19 + 2*b117 =L= 2;

e116..    x20 + 2*b125 =L= 2;

e117..    x21 + 2*b133 =L= 2;

e118..    x22 + 2*b141 =L= 2;

e119..    x23 + 2*b149 =L= 2;

e120..    x24 + 2*b157 =L= 2;

e121..    x25 + 2*b165 =L= 2;

e122..    x26 + 2*b173 =L= 2;

e123..    x27 + 2*b181 =L= 2;

e124..    x28 + 2*b189 =L= 2;

e125..    b85 + b86 + b87 + b88 + b89 + b90 + b91 + b92 =E= 1;

e126..    b93 + b94 + b95 + b96 + b97 + b98 + b99 + b100 =E= 1;

e127..    b101 + b102 + b103 + b104 + b105 + b106 + b107 + b108 =E= 1;

e128..    b109 + b110 + b111 + b112 + b113 + b114 + b115 + b116 =E= 1;

e129..    b117 + b118 + b119 + b120 + b121 + b122 + b123 + b124 =E= 1;

e130..    b125 + b126 + b127 + b128 + b129 + b130 + b131 + b132 =E= 1;

e131..    b133 + b134 + b135 + b136 + b137 + b138 + b139 + b140 =E= 1;

e132..    b141 + b142 + b143 + b144 + b145 + b146 + b147 + b148 =E= 1;

e133..    b149 + b150 + b151 + b152 + b153 + b154 + b155 + b156 =E= 1;

e134..    b157 + b158 + b159 + b160 + b161 + b162 + b163 + b164 =E= 1;

e135..    b165 + b166 + b167 + b168 + b169 + b170 + b171 + b172 =E= 1;

e136..    b173 + b174 + b175 + b176 + b177 + b178 + b179 + b180 =E= 1;

e137..    b181 + b182 + b183 + b184 + b185 + b186 + b187 + b188 =E= 1;

e138..    b189 + b190 + b191 + b192 + b193 + b194 + b195 + b196 =E= 1;

* set non-default bounds
x43.lo = 6.5;
x44.lo = 3.25;
x45.lo = 16.58;
x46.lo = 14.92;
x47.lo = 12.925;
x48.lo = 12.26;
x49.lo = 8.76;
x50.lo = 16.08;
x65.up = 2.5;
x66.up = 6;

* set non-default levels
x43.l = 11.5;
x44.l = 8.25;
x45.l = 21.58;
x46.l = 19.92;
x47.l = 17.925;
x48.l = 17.26;
x49.l = 13.76;
x50.l = 21.08;
x65.l = 0.961470588235294;
x66.l = 2.30752941176471;
b85.l = 0.125;
b86.l = 0.125;
b87.l = 0.125;
b88.l = 0.125;
b89.l = 0.125;
b90.l = 0.125;
b91.l = 0.125;
b92.l = 0.125;
b93.l = 0.125;
b94.l = 0.125;
b95.l = 0.125;
b96.l = 0.125;
b97.l = 0.125;
b98.l = 0.125;
b99.l = 0.125;
b100.l = 0.125;
b101.l = 0.125;
b102.l = 0.125;
b103.l = 0.125;
b104.l = 0.125;
b105.l = 0.125;
b106.l = 0.125;
b107.l = 0.125;
b108.l = 0.125;
b109.l = 0.125;
b110.l = 0.125;
b111.l = 0.125;
b112.l = 0.125;
b113.l = 0.125;
b114.l = 0.125;
b115.l = 0.125;
b116.l = 0.125;
b117.l = 0.125;
b118.l = 0.125;
b119.l = 0.125;
b120.l = 0.125;
b121.l = 0.125;
b122.l = 0.125;
b123.l = 0.125;
b124.l = 0.125;
b125.l = 0.125;
b126.l = 0.125;
b127.l = 0.125;
b128.l = 0.125;
b129.l = 0.125;
b130.l = 0.125;
b131.l = 0.125;
b132.l = 0.125;
b133.l = 0.125;
b134.l = 0.125;
b135.l = 0.125;
b136.l = 0.125;
b137.l = 0.125;
b138.l = 0.125;
b139.l = 0.125;
b140.l = 0.125;
b141.l = 0.125;
b142.l = 0.125;
b143.l = 0.125;
b144.l = 0.125;
b145.l = 0.125;
b146.l = 0.125;
b147.l = 0.125;
b148.l = 0.125;
b149.l = 0.125;
b150.l = 0.125;
b151.l = 0.125;
b152.l = 0.125;
b153.l = 0.125;
b154.l = 0.125;
b155.l = 0.125;
b156.l = 0.125;
b157.l = 0.125;
b158.l = 0.125;
b159.l = 0.125;
b160.l = 0.125;
b161.l = 0.125;
b162.l = 0.125;
b163.l = 0.125;
b164.l = 0.125;
b165.l = 0.125;
b166.l = 0.125;
b167.l = 0.125;
b168.l = 0.125;
b169.l = 0.125;
b170.l = 0.125;
b171.l = 0.125;
b172.l = 0.125;
b173.l = 0.125;
b174.l = 0.125;
b175.l = 0.125;
b176.l = 0.125;
b177.l = 0.125;
b178.l = 0.125;
b179.l = 0.125;
b180.l = 0.125;
b181.l = 0.125;
b182.l = 0.125;
b183.l = 0.125;
b184.l = 0.125;
b185.l = 0.125;
b186.l = 0.125;
b187.l = 0.125;
b188.l = 0.125;
b189.l = 0.125;
b190.l = 0.125;
b191.l = 0.125;
b192.l = 0.125;
b193.l = 0.125;
b194.l = 0.125;
b195.l = 0.125;
b196.l = 0.125;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2024-08-26 Git hash: 6cc1607f
Imprint / Privacy Policy / License: CC-BY 4.0