MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance cvxnonsep_pcon20r

separable reformulation of convex MINLP test problem with non-separable power constraint (cvxnonsep_pcon20)
see also problem description (PDF).
Formats ams gms mod nl osil py
Primal Bounds (infeas ≤ 1e-08)
-21.51230120 p1 ( gdx sol )
(infeas: 3e-14)
Other points (infeas > 1e-08)  
Dual Bounds
-21.51230120 (ALPHAECP)
-21.51230126 (ANTIGONE)
-21.51230123 (BARON)
-21.51230120 (BONMIN)
-21.51230124 (COUENNE)
-21.51230120 (LINDO)
-21.51230130 (SCIP)
-21.51230254 (SHOT)
References Kronqvist, Jan, Lundell, Andreas, and Westerlund, Tapio, Reformulations for utilizing separability when solving convex MINLP problems, submitted, 2017.
Application Test Problem
Added to library 11 Sep 2017
Problem type MINLP
#Variables 39
#Binary Variables 0
#Integer Variables 10
#Nonlinear Variables 20
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 10
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 20
#Nonlinear Nonzeros in Objective 0
#Constraints 20
#Linear Constraints 1
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 19
Operands in Gen. Nonlin. Functions cvpower
Constraints curvature convex
#Nonzeros in Jacobian 76
#Nonlinear Nonzeros in Jacobian 38
#Nonzeros in (Upper-Left) Hessian of Lagrangian 58
#Nonzeros in Diagonal of Hessian of Lagrangian 20
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 20
Maximal blocksize in Hessian of Lagrangian 20
Average blocksize in Hessian of Lagrangian 20.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 9.0000e-02
Maximal coefficient 2.0000e+00
Infeasibility of initial point 1
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         21        1        0       20        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*         40       30        0       10        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         97       59       38        0
*
*  Solve m using MINLP minimizing objvar;


Variables  i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,objvar,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35
          ,x36,x37,x38,x39,x40;

Positive Variables  x11,x12,x13,x14,x15,x16,x17,x18,x19,x20;

Integer Variables  i1,i2,i3,i4,i5,i6,i7,i8,i9,i10;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21;


e1..    0.53*i1 + 0.65*i2 + 0.49*i3 + 0.82*i4 + 0.88*i5 + 0.97*i6 + 0.53*i7
      + 0.33*i8 + 0.11*i9 + 0.61*i10 + 0.78*x11 + 0.09*x12 + 0.27*x13
      + 0.15*x14 + 0.28*x15 + 0.44*x16 + 0.53*x17 + 0.46*x18 + 0.88*x19
      + 0.15*x20 + objvar =E= 0;

e2..    x22 + x23 + x24 + x25 + x26 + x27 + x28 + x29 + x30 + x31 + x32 + x33
      + x34 + x35 + x36 + x37 + x38 + x39 + x40 =L= 240;

e3.. 2**(i1 + i2) - x22 =L= 0;

e4.. 2**(i2 + i3) - x23 =L= 0;

e5.. 2**(i3 + i4) - x24 =L= 0;

e6.. 2**(i4 + i5) - x25 =L= 0;

e7.. 2**(i5 + i6) - x26 =L= 0;

e8.. 2**(i6 + i7) - x27 =L= 0;

e9.. 2**(i7 + i8) - x28 =L= 0;

e10.. 2**(i8 + i9) - x29 =L= 0;

e11.. 2**(i9 + i10) - x30 =L= 0;

e12.. 2**(i10 + x11) - x31 =L= 0;

e13.. 2**(x11 + x12) - x32 =L= 0;

e14.. 2**(x12 + x13) - x33 =L= 0;

e15.. 2**(x13 + x14) - x34 =L= 0;

e16.. 2**(x14 + x15) - x35 =L= 0;

e17.. 2**(x15 + x16) - x36 =L= 0;

e18.. 2**(x16 + x17) - x37 =L= 0;

e19.. 2**(x17 + x18) - x38 =L= 0;

e20.. 2**(x18 + x19) - x39 =L= 0;

e21.. 2**(x19 + x20) - x40 =L= 0;

* set non-default bounds
i1.up = 5;
i2.up = 5;
i3.up = 5;
i4.up = 5;
i5.up = 5;
i6.up = 5;
i7.up = 5;
i8.up = 5;
i9.up = 5;
i10.up = 5;
x11.up = 5;
x12.up = 5;
x13.up = 5;
x14.up = 5;
x15.up = 5;
x16.up = 5;
x17.up = 5;
x18.up = 5;
x19.up = 5;
x20.up = 5;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2024-08-26 Git hash: 6cc1607f
Imprint / Privacy Policy / License: CC-BY 4.0