MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance cvxnonsep_pcon30
convex MINLP test problem with non-separable power constraint see also problem description (PDF).
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -71.98603263 (ALPHAECP) -35.98684249 (ANTIGONE) -35.98684233 (BARON) -35.98684230 (BONMIN) -35.98686979 (COUENNE) -35.98684230 (LINDO) -35.98684230 (SCIP) -35.98684382 (SHOT) |
Referencesⓘ | Kronqvist, Jan, Lundell, Andreas, and Westerlund, Tapio, Reformulations for utilizing separability when solving convex MINLP problems, submitted, 2017. |
Applicationⓘ | Test Problem |
Added to libraryⓘ | 11 Sep 2017 |
Problem typeⓘ | MINLP |
#Variablesⓘ | 30 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 15 |
#Nonlinear Variablesⓘ | 30 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 15 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 30 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 1 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 1 |
Operands in Gen. Nonlin. Functionsⓘ | cvpower sqr |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 30 |
#Nonlinear Nonzeros in Jacobianⓘ | 30 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 900 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 30 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 30 |
Maximal blocksize in Hessian of Lagrangianⓘ | 30 |
Average blocksize in Hessian of Lagrangianⓘ | 30.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-02 |
Maximal coefficientⓘ | 2.0000e+00 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 2 1 0 1 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 31 16 0 15 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 61 31 30 0 * * Solve m using MINLP minimizing objvar; Variables i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,objvar; Positive Variables x16,x17,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29 ,x30; Integer Variables i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15; Equations e1,e2; e1.. 0.52*i1 + 0.94*i2 + 0.64*i3 + 0.96*i4 + 0.24*i5 + 0.68*i6 + 0.29*i7 + 0.67*i8 + 0.7*i9 + 0.07*i10 + 0.25*i11 + 0.22*i12 + 0.67*i13 + 0.84*i14 + 0.34*i15 + 0.78*x16 + 0.68*x17 + 0.01*x18 + 0.6*x19 + 0.39*x20 + 0.92*x21 + 0.1*x22 + 0.46*x23 + 0.77*x24 + 0.32*x25 + 0.78*x26 + 0.37*x27 + 0.78*x28 + 0.47*x29 + 0.04*x30 + objvar =E= 0; e2.. sqr(2**(i1 + i2) + 2**(i2 + i3) + 2**(i3 + i4) + 2**(i4 + i5) + 2**(i5 + i6) + 2**(i6 + i7) + 2**(i7 + i8) + 2**(i8 + i9) + 2**(i9 + i10) + 2**(i10 + i11) + 2**(i11 + i12) + 2**(i12 + i13) + 2**(i13 + i14) + 2**(i14 + i15 ) + 2**(i15 + x16) + 2**(x16 + x17) + 2**(x17 + x18) + 2**(x18 + x19) + 2 **(x19 + x20) + 2**(x20 + x21) + 2**(x21 + x22) + 2**(x22 + x23) + 2**(x23 + x24) + 2**(x24 + x25) + 2**(x25 + x26) + 2**(x26 + x27) + 2**(x27 + x28 ) + 2**(x28 + x29) + 2**(x29 + x30)) =L= 129600; * set non-default bounds i1.up = 5; i2.up = 5; i3.up = 5; i4.up = 5; i5.up = 5; i6.up = 5; i7.up = 5; i8.up = 5; i9.up = 5; i10.up = 5; i11.up = 5; i12.up = 5; i13.up = 5; i14.up = 5; i15.up = 5; x16.up = 5; x17.up = 5; x18.up = 5; x19.up = 5; x20.up = 5; x21.up = 5; x22.up = 5; x23.up = 5; x24.up = 5; x25.up = 5; x26.up = 5; x27.up = 5; x28.up = 5; x29.up = 5; x30.up = 5; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-08-26 Git hash: 6cc1607f