MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ex7_3_6
| Formatsⓘ | ams gms mod nl osil pip py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | inf (ANTIGONE) inf (BARON) inf (COUENNE) inf (LINDO) inf (SCIP) |
| Referencesⓘ | Floudas, C A, Pardalos, Panos M, Adjiman, C S, Esposito, W R, Gumus, Zeynep H, Harding, S T, Klepeis, John L, Meyer, Clifford A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic Publishers, 1999. Barmish, B R, New Tools for Robustness of Linear Systems, MacMillan Publishing Company, New York, NY, 1994. Abate, M, Barmish, B R, Murillo-Sanchez, C, and Tempo, R, Application of Some New Tools to Robust Stability Analysis of Spark Ignition Engines : A Case Study, IEEE Transactions on Control Systems Technology, 2:1, 1994, 22-30. |
| Sourceⓘ | Test Problem ex7.3.6 of Chapter 7 of Floudas e.a. handbook |
| Added to libraryⓘ | 31 Jul 2001 |
| Problem typeⓘ | NLP |
| #Variablesⓘ | 17 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 14 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 1 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 17 |
| #Linear Constraintsⓘ | 7 |
| #Quadratic Constraintsⓘ | 1 |
| #Polynomial Constraintsⓘ | 9 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 0 |
| Operands in Gen. Nonlin. Functionsⓘ | |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 78 |
| #Nonlinear Nonzeros in Jacobianⓘ | 54 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 60 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 6 |
| #Blocks in Hessian of Lagrangianⓘ | 2 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 7 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 7 |
| Average blocksize in Hessian of Lagrangianⓘ | 7.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 6.2899e-05 |
| Maximal coefficientⓘ | 9.0000e+00 |
| Infeasibility of initial pointⓘ | 3.433 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 18 11 0 7 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 18 18 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 80 26 54 0
*
* Solve m using NLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,objvar;
Positive Variables x8,x9;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18;
e1.. - x9 + objvar =E= 0;
e2.. POWER(x8,4)*x14 - POWER(x8,6)*x16 - sqr(x8)*x12 + x10 =E= 0;
e3.. POWER(x8,6)*x17 - POWER(x8,4)*x15 + sqr(x8)*x13 - x11 =E= 0;
e4.. - x1 - 1.2721*x9 =L= -3.4329;
e5.. - x2 - 0.06*x9 =L= -0.1627;
e6.. - x3 - 0.0782*x9 =L= -0.1139;
e7.. x4 - 0.3068*x9 =L= 0.2539;
e8.. - x5 - 0.0108*x9 =L= -0.0208;
e9.. x6 - 2.4715*x9 =L= 2.0247;
e10.. x7 + 9*x9 =L= 1;
e11.. -(6.82079e-5*x1*x3*sqr(x4) + 6.82079e-5*x1*x2*x4*x5) + x10 =E= 0;
e12.. -(0.00076176*sqr(x2)*sqr(x5) + 0.00076176*sqr(x3)*sqr(x4) + 0.000402141*
x1*x2*sqr(x5) + 0.00337606*x1*x3*sqr(x4) + 6.82079e-5*x1*x4*x5 +
0.00051612*sqr(x2)*x5*x6 + 0.00337606*x1*x2*x4*x5 + 6.82079e-5*x1*x2*x4*
x7 + 6.28987e-5*x1*x2*x5*x6 + 0.000402141*x1*x3*x4*x5 + 6.28987e-5*x1*x3*
x4*x6 + 0.00152352*x2*x3*x4*x5 + 0.00051612*x2*x3*x4*x6) + x11 =E= 0;
e13.. -(0.000402141*sqr(x5)*x1 + 0.00152352*sqr(x5)*x2 + 0.0552*sqr(x2)*sqr(x5)
+ 0.0552*sqr(x3)*sqr(x4) + 0.0189477*x1*x2*sqr(x5) + 0.034862*x1*x3*sqr(
x4) + 0.00336706*x1*x4*x5 + 6.82079e-5*x1*x4*x7 + 6.28987e-5*x1*x5*x6 +
0.00152352*x3*x4*x5 + 0.00051612*x3*x4*x6 - 0.00234048*sqr(x3)*x4*x6 +
0.034862*x1*x2*x4*x5 + 0.0237398*sqr(x2)*x5*x6 + 0.00152352*sqr(x2)*x5*x7
+ 0.00051612*sqr(x2)*x6*x7 + 0.00336706*x1*x2*x4*x7 + 0.00287416*x1*x2*
x5*x6 + 0.000804282*x1*x2*x5*x7 + 6.28987e-5*x1*x2*x6*x7 + 0.0189477*x1*
x3*x4*x5 + 0.00287416*x1*x3*x4*x6 + 0.000402141*x1*x3*x4*x7 + 0.1104*x2*
x3*x4*x5 + 0.0237398*x2*x3*x4*x6 + 0.00152352*x2*x3*x4*x7 - 0.00234048*x2
*x3*x5*x6 + 0.00103224*x2*x5*x6) + x12 =E= 0;
e14.. -(0.189477*sqr(x5)*x1 + 0.1104*sqr(x5)*x2 + 0.00051612*x5*x6 + sqr(x2)*
sqr(x5) + 0.00076176*sqr(x2)*sqr(x7) + sqr(x3)*sqr(x4) + 0.1586*x1*x2*
sqr(x5) + 0.000402141*x1*x2*sqr(x7) + 0.0872*x1*x3*sqr(x4) + 0.034862*x1*
x4*x5 + 0.00336706*x1*x4*x7 + 0.00287416*x1*x5*x6 + 6.28987e-5*x1*x6*x7
+ 0.00103224*x2*x6*x7 + 0.1104*x3*x4*x5 + 0.0237398*x3*x4*x6 +
0.00152352*x3*x4*x7 - 0.00234048*x3*x5*x6 + 0.1826*sqr(x2)*x5*x6 + 0.1104
*sqr(x2)*x5*x7 + 0.0237398*sqr(x2)*x6*x7 - 0.0848*sqr(x3)*x4*x6 + 0.0872*
x1*x2*x4*x5 + 0.034862*x1*x2*x4*x7 + 0.0215658*x1*x2*x5*x6 + 0.0378954*x1
*x2*x5*x7 + 0.00287416*x1*x2*x6*x7 + 0.1586*x1*x3*x4*x5 + 0.0215658*x1*x3
*x4*x6 + 0.0189477*x1*x3*x4*x7 + 2*x2*x3*x4*x5 + 0.1826*x2*x3*x4*x6 +
0.1104*x2*x3*x4*x7 - 0.0848*x2*x3*x5*x6 - 0.00234048*x2*x3*x6*x7 +
0.00076176*sqr(x5) + 0.0474795*x2*x5*x6 + 0.000804282*x1*x5*x7 +
0.00304704*x2*x5*x7) + x13 =E= 0;
e15.. -(0.1586*sqr(x5)*x1 + 0.000402141*sqr(x7)*x1 + 2*sqr(x5)*x2 + 0.00152352*
sqr(x7)*x2 + 0.0237398*x5*x6 + 0.00152352*x5*x7 + 0.00051612*x6*x7 +
0.0552*sqr(x2)*sqr(x7) + 0.0189477*x1*x2*sqr(x7) + 0.0872*x1*x4*x5 +
0.034862*x1*x4*x7 + 0.0215658*x1*x5*x6 + 0.00287416*x1*x6*x7 + 0.0474795*
x2*x6*x7 + 2*x3*x4*x5 + 0.1826*x3*x4*x6 + 0.1104*x3*x4*x7 - 0.0848*x3*x5*
x6 - 0.00234048*x3*x6*x7 + 2*sqr(x2)*x5*x7 + 0.1826*sqr(x2)*x6*x7 +
0.0872*x1*x2*x4*x7 + 0.3172*x1*x2*x5*x7 + 0.0215658*x1*x2*x6*x7 + 0.1586*
x1*x3*x4*x7 + 2*x2*x3*x4*x7 - 0.0848*x2*x3*x6*x7 + 0.0552*sqr(x5) +
0.3652*x2*x5*x6 + 0.0378954*x1*x5*x7 + 0.2208*x2*x5*x7) + x14 =E= 0;
e16.. -(0.0189477*sqr(x7)*x1 + 0.1104*sqr(x7)*x2 + 0.1826*x5*x6 + 0.1104*x5*x7
+ 0.0237398*x6*x7 + sqr(x2)*sqr(x7) + 0.1586*x1*x2*sqr(x7) + 0.0872*x1*
x4*x7 + 0.0215658*x1*x6*x7 + 0.3652*x2*x6*x7 + 2*x3*x4*x7 - 0.0848*x3*x6*
x7 + sqr(x5) + 0.00076176*sqr(x7) + 0.3172*x1*x5*x7 + 4*x2*x5*x7) + x15
=E= 0;
e17.. -(0.1586*sqr(x7)*x1 + 2*sqr(x7)*x2 + 2*x5*x7 + 0.1826*x6*x7 + 0.0552*sqr(
x7)) + x16 =E= 0;
e18.. -sqr(x7) + x17 =E= 0;
* set non-default bounds
x1.up = 3.4329;
x2.up = 0.1627;
x3.up = 0.1139;
x4.lo = 0.2539;
x5.up = 0.0208;
x6.lo = 2.0247;
x7.lo = 1;
x8.up = 10;
x9.up = 1;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

